Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulated global environmental changes impact plant diversity

17.06.2003


In a high-performance machine, each part is essential to the overall function of the whole. In ecology, species diversity is necessary to the smooth operation of the ecosystem. Until recently, little attention has been paid to the potential ecological effects on plant diversity from combined global environmental changes including increased atmospheric CO2, warming, elevated nitrogen pollution, and increased precipitation. Scientists from the Carnegie Institution’s Department of Global Ecology in Palo Alto, California, and Stanford University published a study on this subject in the June 16-20, 2003, Proceedings of the National Academy of Sciences Online Early Edition. "We were surprised at how quickly some environmental changes can alter the complexion of an ecosystem," said Erika Zavaleta, the study’s lead author and a new member of the faculty at the University of California, Santa Cruz. The finding is significant for understanding what can happen to ecosystems when confronted with the interrelated climactic and atmospheric changes that are observed today and that presage larger changes in the future.



The Carnegie and Stanford scientists conducted their three-year study in the Jasper Ridge Biological Preserve - a typical California grassland where the 43 plant species are a mixture of grasses and wildflowers. "We simulated a series of possible future environments for California, with four global change factors: elevated CO2, warming, nitrogen pollution, and added precipitation, alone and in combinations. Different combinations with altered levels of two, three, and four of these variables are likely to reflect future conditions in different parts of the globe," said Chris Field, director of the Carnegie Institution’s Department of Global Ecology and coordinator of the Jasper Ridge study.

"At the end of three years, we found that treatments with three of the four experimental treatments changed total plant diversity. Elevated CO2 reduced diversity as did adding nitrogen. More water increased plant diversity and, warming alone had no effect," Zavaleta explained. The four treatment combinations that represent likely possible futures all resulted in decreased wildflower diversity; but total diversity was not affected because there was an increase in the grasses. The largest loss of wildflower diversity came with elevated CO2 plus warming and nitrogen pollution, and all four of the factors combined. "Given the importance of the wildflower species for wildlife, nutrient cycling, and natural beauty, the losses under realistic global changes are a cause for concern," said Zavaleta.


Field emphasized: "Over the last century we have witnessed an 30% increase in atmospheric CO2 , an overall global warming of about 1 F, increases in nitrogen pollution from human activities, and changes in rainfall patterns. We are in the process of determining how the interactions among these components are affecting the health of the planet. This study and others like it at Global Ecology can provide some sorely needed answers."


The Jasper Ridge Global Change Experiment was supported by the National Science Foundation, the David and Lucile Packard Foundation, the Morgan Family Foundation, the Jasper Ridge Biological Preserve, and the Carnegie Institution. The Carnegie Institution (www.CarnegieInstitution.org) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments in the U.S.: Embryology, Geophysical Laboratory, Terrestrial Magnetism, The Observatories, Plant Biology, and Global Ecology.


Chris Field | EurekAlert!
Further information:
http://www.ciw.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>