Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three Gorges Dam is an opportunity for ecoscience

23.05.2003


China’s Three Gorges Dam, the largest dam project ever, has been seen by ecologists as an environmental disaster in the making. With construction scheduled to be completed later this year, little can be done to stop it, but some Chinese and American ecologists point out that the dark cloud of the environmental consequences does have a silver lining – an unprecedented opportunity to do environmental science.



In an article forthcoming in the May 23 issue of Science, Arizona State University landscape ecologist Jianguo Wu and co-authors Jianhui Huang, Xingguo Han, Zongqiang Xie and Xianming Gao, all from the Institute of Botany of the Chinese Academy of Sciences, argue that the project represents an opportunity to conduct arguably the largest and most complete experiment ever run on the effects of habitat fragmentation, an ecological condition that affects environments across the globe through the process of ongoing human development.

Habitat fragmentation occurs when human development or some other force eliminates large areas continuous natural habitat, leaving habitat "islands" where remaining species of plants and animals are left in a limited space, isolated from other similar communities and habitats. Examples of the condition are wild spaces (parks or undeveloped lots) that are surrounded by urban development, remnant patches of wilderness that are left when a forest is cleared for farming, or elevated terrestrial habitats that suddenly become scattered islands when a landscape is flooded. While some plant and animal species initially remain on the habitat fragments, the long-term stability of the isolated ecosystems is in question.


In the case of Three Gorges Dam, the reservoir will cover 1080 square kilometers of ecologically rich landscape, leaving several dozen to perhaps more than 100 mountaintops as islands.

"Habitat fragmentation is a pervasive global problem that has generally been recognized as the primary cause of the loss of biodiversity," said Wu, "yet its underlying processes and mechanisms remain poorly understood."

Wu argues that because of the dam’s size, the biological richness of the area, and the possibility of doing thorough before-and-after surveys and studies, the Three Gorges Dam Project would allow the best opportunity to date to study habitat fragmentation, in process and on a full landscape scale. At issue is experimental verification of the fine points of Hierarchical Patch Dynamics, an ecological theory that inter-relates specific plant and animal populations, communities and habitats in a complex and dynamic linkages over diverse landscapes.

"Historically, we have had only a few remarkable natural large-scale ecological experiments with habitat fragmentation," he said. "It is clear that some of the most valuable knowledge of the ecological consequences of habitat fragmentation have been gained by this kind of study. With Three Gorges Dam, we will be able to learn vastly more."

Though similar studies have been done at Gatun Lake in Panama and Lake Guri in Venezuela, no previous study of the effects of habitat fragmentation has had the advantage of the kind of "planned experiment" that Three Gorges Dam represents. Because of the groundwork laid by previous research, the existence of a developed theory to guide the current research and the opportunity to fully study the landscape before it is changed, Three Gorges Dam will allow the thorough testing and refinement of key hypotheses in conservation biology and landscape ecology.

The key issues for the proposed experiment at the moment are time – the dam will be completed later this year and the six-year process of filling will begin – and the need to quickly marshal a team of scientists and a large set of resources from both China and the international community.

"A lot of Chinese ecologists are looking forward to some sort of international collaboration," said Wu "The Chinese government, including the Academy of Sciences, the Natural Science Foundation, and some other agencies have already supported some small projects, but I think it is extremely important to have an international collaborative team to really carry this forward.

"International expertise and funding, combined with existing Chinese resources will make this a very productive project for ecology. I don’t think we could find any other place with this opportunity where we would find all these human resources and support from all angles to do such a gigantic experiment," he said.

Though much will be lost in the process, the knowledge that can be gained from the research may ultimately help humanity better preserve the global biosphere, Wu notes. "The world’s largest dam is not only a demonstration of the mighty power of humanity; it can and should become a unique and rich source of information for understanding and conserving biodiversity and ecosystem services," he said.

James Hathaway | EurekAlert!
Further information:
http://www.asu.edu/asunews/

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>