Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria convert food processing waste to hydrogen

21.05.2003


Penn State environmental engineers estimate, based on tests with wastewater from small Pennsylvania food processors, that typical large food manufacturers could use their starch-rich wastewater to produce hydrogen gas worth close to $5 million or more each year. They present their findings today at the 103rd General Meeting of the American Society for Microbiology.



Steven Van Ginkel, doctoral candidate, and Dr. Sang-Eun Oh, post-doctoral researcher in environmental engineering, conducted the tests.

"In addition to hydrogen, which can be used as a fuel and industrial feedstock, methane, the main component of natural gas, can be generated from the wastewaters," says Van Ginkel. Both hydrogen and methane can be converted into electricity via fuel cells at close to 80% efficiency. "By extracting hydrogen and methane from their wastewaters, these plants can also reap significant savings by not needing to aerate. Aeration makes up 20 to 80 percent of wastewater treatment costs."


Van Ginkel presented the Penn State team’s findings in a poster, Turning America’s Waste into Energy, today (May 20) at 9 a.m . His co-authors are Dr. Oh and Dr. Bruce Logan, director of the Penn State Hydrogen Energy Center and Kappe professor of environmental engineering.

In the tests, Van Ginkel and Oh added hydrogen-producing bacteria to samples of wastewater from the Pennsylvania food processors. The bacteria were obtained from ordinary soil collected at Penn State and then heat-treated to kill all bacteria except those that produce spores. Spores are a dormant, heat resistant, bacterial form adapted to survive in unfavorable environments but able to begin growing again in favorable conditions.

"The spores contain bacteria that can produce hydrogen and once they are introduced into the wastewater, they eat the food in the water and produce hydrogen in a normal fermentation process," says Van Ginkel.

Keeping the wastewater slightly acidic in the hydrogen production step helps to prevent any methane-producing bacteria from growing and consuming hydrogen.

After only a day of fermentation in oxygen-free or anaerobic conditions, the hydrogen-producing bacteria fill the headspace in the fermentation flasks with biogas containing 60 percent hydrogen and 40 percent carbon dioxide.

In the second stage of the process, the acidity in the wastewater is changed and methane-producing bacteria added. The bacteria eat the leftovers, grow and generate methane.

The solid material or sludge left over from fermentation is only one-fourth to one-fifth the volume from typical aerobic treatment processes.

"Using this continuous fermentation process, we can strip nearly all of the energy out of the wastewater in forms that people can use now. While this approach has high capital costs at the outset, our calculations show that it could pay off well both environmentally and financially for some food processors in the long run. In many instances, existing treatment plants can easily be retrofitted to produce hydrogen and methane at a much lower capital cost," says Van Ginkel.


###
The research was supported by the National Science Foundation Biogeochemical Research Initiation Education grant.

This release is a summary of a presentation from the 103rd General Meeting of the American Society for Microbiology, May 18-22, 2003, in Washington, DC. Additional information on these and other presentations at the 103rd ASM General Meeting can be found online at http://www.asm.org/Media/index.asp?bid=17053 or by contacting Jim Sliwa (jsliwa@asmusa.org) in the ASM Office of Communications. The phone number for the General Meeting Press Room is (202) 249-4064 and will be active from 12:00 noon EDT, May 18 until 12:00 noon EDT, May 22.


Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org/

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>