Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside scientists modify existing chemical scrubber to environmentally friendly, all-natural filter

08.05.2003


Converting one third of chemical scrubbers worldwide could save up to two billion dollars each year


The UC Riverside researchers packed polyurethane foam cubes inoculated with hydrogen sulfide-degrading bacteria into the Orange County Sanitation District chemical scrubber. (Photo credit: M. Deshusses.)


The Orange County Sanitation District scrubber and biotrickling filter. (Photo credit: M. Deshusses.)



Scientists at UC Riverside have pushed the current limit of a technique for biologically removing hydrogen sulfide from sewage emissions a step further. Marc Deshusses, associate professor in the department of chemical and environmental engineering, and his postdoctoral researcher, David Gabriel, report in the Proceedings of the National Academy of Sciences (PNAS) that they have modified an existing full-scale chemical scrubber at the Orange County Sanitation District (OCSD), California, to a biological trickling filter.

"Hydrogen sulfide odors, which have the smell of rotten eggs, can be treated in biological reactors called biotrickling filters at rates similar to those observed in chemical scrubbers," said Deshusses. "Biotreatment is cheaper, safer, and more environmentally friendly. In our paper, we also show that you can convert existing chemical scrubbers to biological trickling filters quite easily."


Chemical scrubbing suffers from important drawbacks, such as high operating costs, generation of halomethanes that are known air toxics, and the requirement for hazardous chemicals, which pose serious health and safety concerns.

In biological trickling filters or biotrickling filters, the waste air stream is passed through a packed bed on which pollutant-degrading bacteria are placed in the form of a biofilm. These bacteria absorb and degrade gaseous pollutants. After the bacteria begin to multiply, their efficiency at converting hydrogen sulfide to sulfate is nearly 100 percent. Moreover, the system removes more odorant chemicals, including other sulfur and nitrogen compounds.

"We did extensive research in the laboratory prior to and during the field demonstration at OCSD in an attempt to explain why we obtained such a high performance from the biotrickling filter," said Deshusses.

The UC Riverside researchers packed polyurethane foam cubes inoculated with hydrogen sulfide-degrading bacteria into the OCSD scrubber. They also replaced the existing liquid pump with a smaller one, disconnected the chemical supply system, and modified the control systems.

Emission of objectionable odors is a major problem for wastewater treatment and other processing facilities. For odor control, biological treatment is a promising alternative to conventional control methods, but so far biotreatment always required significantly larger reactor volumes than chemical scrubbers.

In the PNAS paper, the researchers report that effective treatment of hydrogen sulfide in the converted scrubber was possible even at gas contact times as low as 1.6 seconds, comparable to usual contact times in chemical scrubbers.

"Continuous operation of the converted scrubber for more than 8 months showed stable performances and robust behavior for hydrogen sulfide treatment, with pollutant removal performance comparable to that achieved using a chemical scrubber," said Deshusses. "Our study demonstrates that biotrickling filters can replace chemical scrubbers and be a safer, more economical technique for odor control."

An estimated 10,000-40,000 scrubbers for odor control operate at publicly owned treatment works in the United States and probably more than 100,000 scrubbers worldwide. "Many of those scrubbers treat hydrogen sulfide only," said Deshusses, "hence, based on the results of our study, they could potentially be converted to biotrickling filters."

An overall cost-benefit analysis of the scrubber that was converted at OCSD shows that total annual savings in operating costs (essentially chemicals and electricity) are about $30,000 per year for the biotrickling filter compared to chemical scrubbing. The estimated commercial cost of converting the chemical scrubber to a biotrickling filter was about $40,000-60,000, which compares well with the annual savings in operating costs.

"If one assumes that 25 to 40 percent of the chemical scrubbers worldwide could be converted to biotrickling filters," said Deshusses, "it would represent a total market of $1-3 billion and would result in net energy and chemical savings of approximately $0.25-2 billion per year."

The study was performed during 2001-2002 and is still on-going. Research was funded by OCSD.

The University of California, Riverside is home to some of the best scientists and engineers in the world in addition to its world-class research centers. The Bourns College of Engineering is well known for its research in embedded systems and networking in computer science, for environmental sciences (e.g., low emission vehicles, air pollution research), nanotechnology and research in intelligent systems.

Iqbal Pittalwala | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=580
http://www.engr.ucr.edu/~mdeshuss/
http://www.ocsd.com/

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>