Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Break Down Patterns in Nature

15.04.2003



Nature has many patterns and ecologists seek to both describe and understand them. Nature also is very complex. One challenge is to find patterns in that complexity and to ask whether simple explanations lie beneath them.

Ecologists have tackled this challenge for decades, erecting various hypotheses and debating their plausibility. In an important paper featured in the current issue of the Proceedings of the National Academy of Sciences (PNAS), an international team of ecologists describes a fundamental theory that unites several patterns that previously had been viewed as unrelated.

The theory simplifies various aspects of ecological complexity with an elegant model that unites all of them. It provides a theory for quantifying biodiversity.




George Sugihara of Scripps Institution of Oceanography, UCSD, (USA) led a team that included Lord Robert May and Sir Richard Southwood of Oxford University (United Kingdom), Louis-Félix Bersier of the University of Neuchâtel (Switzerland), and Stuart Pimm of Duke University (USA).

The first pattern they considered involves the relationships between various roles played by the species present in an area (their niches). These relationships are often described in ecology as something akin to an "evolutionary tree" in which the branches reflect how ecological communities are organized—a tree-like organizational chart of ecological roles. One "branch" might be all those bird species that feed on insects, another "branch" those species that feed on seeds.

From these main branches, different small branches might be the various insect-feeding species that glean insects from leaves (such as warblers) or bark (such as nuthatches), or those species that catch insects in flight (such as flycatchers). As niches are specified more exactly, we move to the "terminal twigs" in the analogy: the individual species themselves. One "twig" might be a particular bird that gleans insects from the top leaves of a tree, another twig the different species that glean insects from the bottom leaves.

Sugihara and his colleagues found that these common representations have far more information in them than was previously recognized. The pair of species in the terminal twigs have a relationship to each other—they are splitting up the resource that is the total of the insects feeding on the tree.

The PNAS paper finds that abundances of pairs of species in terminal twigs behave in a very special way. "Just like two pieces of rock that once belonged together," Pimm says. "Take a rock and split it into two pieces. On average, the bigger piece will be three-quarters of the rock, the smaller a quarter of the rock. If you take any two rocks, there won’t be such a pattern. The sizes of those rocks are unrelated."

The paper shows that this applies to all the branches in the tree: such as the total abundance of all seed-eating birds versus the total abundance of insect-eating birds.


What can you do with this insight? Plenty, Sugihara argues. "For one thing, a species represented by a ‘twig’ should be much less common than a species that is represented by a ‘branch,’" says Sugihara. "A bird that feeds on small insects from leaves on the top of a tree should be rarer than one that can feed on all sizes of insects anywhere. That prediction holds up."

It can apply to human niches too: The more specialized a profession, the fewer customers the business will have. A general store usually caters to more customers than one that sells just one kind of product.

The insight also suggests a pattern to species abundances across many species. It’s the exact pattern one would get from breaking a rock once, then picking one of the pieces and splitting it, then picking another piece and splitting it, and so on. That sequential splitting generates a characteristic pattern in the sizes of rocks—and the abundance of species. It’s also exactly the one we observe in nature.

In short, Sugihara and colleagues have produced a fundamental theory of the patterns of nature free from any numbers that have to be estimated. (It’s "parameter-free" in scientific jargon—a holy grail in science). The logical consequences of the idea have surprising explanatory power.

There is another extension to these ideas that has been known for some time, but for which Sugihara’s group provides a firm anchor. Suppose we try to place those rock pieces in a sieve. Some will be so small they will pass through the sieve. Hitting the rock more often doesn’t give us more pieces, for we just lose more through the cracks. So it is with species: some become too rare to survive. The bigger the rock, the more pieces we can have before we start to lose them.

Of course, human impacts are shrinking the rock in this metaphor—diminishing the resources available to all species.

Shrink the rock and, as long as you keep sequentially breaking it, you reduce the species in a precise mathematical way. This happens to be exactly the way species drop out as human actions diminish the world by shrinking the habitats (such as tropical forests) on which species depend.

The study was supported by the Office of Naval Research, Merton College Oxford University, the Swiss National Science Foundation, Novartis Foundation, and the Leverhulme Trust.

Mario Aguilera | Scripps News
Further information:
http://scrippsnews.ucsd.edu/pressreleases/sugihara-PNAS.html

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>