Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick, cheaper method for detecting water toxicity developed by Hebrew University research team

25.03.2003


A fast and ingenious new way to detect toxic contamination of water has been developed by researchers at the Hebrew University of Jerusalem.


Dr. Belkin



The method, currently undergoing further experimentation and development, has particular consequences for countering bioterrorism, but with less ominous, potential implications as well for medical technologies, pharmaceuticals and industry, plus environmental quality in general.

The work of the research team, headed by Prof. Shimshon Belkin, chairman of the Division of Environmental Science at the university’s Fredy and Nadine Hermann Graduate School of Applied Science, is described in the current issue of Scopus, the English-language magazine of the university.


The process developed by Belkin and his co-workers involves the genetic engineering of bacteria to sense toxicity in water. Two pieces of DNA: a “promoter,” which acts as an on-off switch for its neighboring gene, and a gene for a fluorescent protein are joined and inserted into the bacteria. When the promoter senses danger, the normally inactive gene is turned on and the bacteria become fluorescent.

Thus, the bacteria become “bioreporters;” that is, their activation indicates that there are toxic chemicals present in the water being sampled. The researchers hope to develop promoters with the ability to sense a broad spectrum of toxins and to do so as soon as they detect the slightest trace of undesirable chemicals in the water.

The engineered bacteria will be incorporated into a specialized micro-fluidic biochip, developed at Tel Aviv University by Prof. Yosi Shacham and his team. This chip will allow the miniaturization of the test system and its integration as a hand-held device. In parallel to the bacterial constructs, two other research groups are busy developing sensing systems based on either human cells (Dr. Efrat Rorman, Israel Ministry of Health) and yeast cells (Dr. David Engelberg of the Department of Biological Chemistry at the Hebrew University’s Silberman Institute of Life Sciences). Both of these systems are expected to provide toxicity data of a more direct relevance to human health and complement the bacterial information.

The use of this technology is expected to be much quicker and cheaper than the conventional methods for testing water toxicity, some of which are based on observations when fish or crustaceans are exposed to suspect water – a process which involves considerable delay.

In accomplishing this research, Prof. Belkin heads a multidisciplinary group, funded by the U.S. Department of Defense, that comprises teams from the Hebrew University, the Medical Corps of the Israel Defense Forces, the National Public Health Laboratories of the Israel Ministry of Health and Tel Aviv University. Working directly with Belkin at the Hebrew University have been Dr. Rachel Rosen, Dr. Rami Pedahzur and graduate student Itay Benovich.

Prof. Belkin envisions a day when army medics will carry hand-held biosensors which would be able to detect a broad range of toxicants and the level of the danger in the water being tested (the brighter the light, the higher the toxicity). The colors of the lights may also be engineered to indicate the type of toxin detected.

In an increasingly complicated and dangerous world, the ability to detect quickly and efficiently the safety of water may be – literally – the difference between life and death.

Jerry Barrach | Hebrew University

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>