Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick, cheaper method for detecting water toxicity developed by Hebrew University research team

25.03.2003


A fast and ingenious new way to detect toxic contamination of water has been developed by researchers at the Hebrew University of Jerusalem.


Dr. Belkin



The method, currently undergoing further experimentation and development, has particular consequences for countering bioterrorism, but with less ominous, potential implications as well for medical technologies, pharmaceuticals and industry, plus environmental quality in general.

The work of the research team, headed by Prof. Shimshon Belkin, chairman of the Division of Environmental Science at the university’s Fredy and Nadine Hermann Graduate School of Applied Science, is described in the current issue of Scopus, the English-language magazine of the university.


The process developed by Belkin and his co-workers involves the genetic engineering of bacteria to sense toxicity in water. Two pieces of DNA: a “promoter,” which acts as an on-off switch for its neighboring gene, and a gene for a fluorescent protein are joined and inserted into the bacteria. When the promoter senses danger, the normally inactive gene is turned on and the bacteria become fluorescent.

Thus, the bacteria become “bioreporters;” that is, their activation indicates that there are toxic chemicals present in the water being sampled. The researchers hope to develop promoters with the ability to sense a broad spectrum of toxins and to do so as soon as they detect the slightest trace of undesirable chemicals in the water.

The engineered bacteria will be incorporated into a specialized micro-fluidic biochip, developed at Tel Aviv University by Prof. Yosi Shacham and his team. This chip will allow the miniaturization of the test system and its integration as a hand-held device. In parallel to the bacterial constructs, two other research groups are busy developing sensing systems based on either human cells (Dr. Efrat Rorman, Israel Ministry of Health) and yeast cells (Dr. David Engelberg of the Department of Biological Chemistry at the Hebrew University’s Silberman Institute of Life Sciences). Both of these systems are expected to provide toxicity data of a more direct relevance to human health and complement the bacterial information.

The use of this technology is expected to be much quicker and cheaper than the conventional methods for testing water toxicity, some of which are based on observations when fish or crustaceans are exposed to suspect water – a process which involves considerable delay.

In accomplishing this research, Prof. Belkin heads a multidisciplinary group, funded by the U.S. Department of Defense, that comprises teams from the Hebrew University, the Medical Corps of the Israel Defense Forces, the National Public Health Laboratories of the Israel Ministry of Health and Tel Aviv University. Working directly with Belkin at the Hebrew University have been Dr. Rachel Rosen, Dr. Rami Pedahzur and graduate student Itay Benovich.

Prof. Belkin envisions a day when army medics will carry hand-held biosensors which would be able to detect a broad range of toxicants and the level of the danger in the water being tested (the brighter the light, the higher the toxicity). The colors of the lights may also be engineered to indicate the type of toxin detected.

In an increasingly complicated and dangerous world, the ability to detect quickly and efficiently the safety of water may be – literally – the difference between life and death.

Jerry Barrach | Hebrew University

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>