Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire Frequency Determines Forest Carbon Storage

24.03.2003


Canadian land cover map / study areas

The BOREAS-follow on Project to determine how carbon storage in boreal forests change in response to wildfire was set in the northern edge of the Canadian boreal forest in Manitoba, Canada, the former Northern Study Area (NSA) in Thompson Manitoba from BOREAS. CREDIT: Canadian Model Forest Program


Northern study area

This satellite image of the Northern Study Area, Manitoba, Canada was taken by the Landsat satellite on July 25, 1990. The bodies of water can be seen in blue. The landscape is a mosaic of different aged stands that are in various stages of recovery from wildfire. Each of the colored patches corresponds to a different aged stand. The years corresponding to the areas indicate the last year of forest fire. CREDIT: NASA/USGS


Scientists studying trees ranging from saplings to 130 years old in Canada’s northern forests have discovered that the period since a fire last swept through an area determines how much carbon the forest can store. Twenty to forty year old stands absorb more carbon than those 70 years old and older, despite being smaller and having less biomass or plant material.

Boreal or northern forests account for close to 25 percent of total carbon stored in vegetation and soils in the Earth’s biosphere. Wildfires burn down individual areas every 40 to 250 years and are an important part of this ecosystem. Whether or not these forests are likely to lower or raise levels of carbon dioxide in the atmosphere depends on how these carbon reserves respond to, and recover from, both climate change and disturbances such as wildfires.

NASA funded part of this study under its Earth Science Enterprise (ESE), whose mission is to understand and protect our home planet. Earth Science in NASA seeks to understand trends in land cover and land use, such as forest fires, that drive global climate. Another Earth Science program objective is to understand the Earth system’s response to natural and human-induced changes, and effects on global carbon cycle.



Marcy Litvak, plant ecologist at the University of Texas at Austin and lead author of the study that appeared in a recent issue of the Journal of Geophysical Research -
Atmospheres, said that the ability of tree stands to store carbon changes as they regenerate from fire. Forests will store more or less carbon depending on the dominant tree species, the amount of moss cover, and changes in forest structure due to fire. Those factors determine how much total carbon is exchanged with the atmosphere.

Carbon is transferred from the atmosphere to the forest through the process of photosynthesis. Carbon is returned to the atmosphere through the process of respiration as soil microorganisms decompose dead organic matter, and trees and mosses metabolize the products of photosynthesis. It is the balance between these two processes, taking in carbon during photosynthesis and "exhaling" carbon through respiration, that determines how much carbon is stored in the forest.

Between 1999-2000, Litvak and her colleagues, Scott Miller and Michael Goulden of the University of California, Irvine, and Steve Wofsy of Harvard University, used solar-powered anemometers and infrared gas analyzers mounted on towers to monitor carbon emissions over five black spruce stands in Manitoba, Canada. These stands ranged in age from 11 to 130 years old. Results indicate that the ability to store carbon is almost zero in the 11 year-old stand, increases to a maximum in the 36 year-old stand, then gradually falls back down to zero in the 130-year old stand. They concluded that most of the net carbon absorption appears to take place from 20-50 years after a fire.

"Seedlings of Aspen, Jack Pine, and Black Spruce all regenerate simultaneously following wildfire in areas once dominated by mature black spruce forests in this region of Manitoba. Aspen and Jack Pine tend to dominate in young stands where light is not limited. Black Spruce grow the slowest, but eventually out-compete the Aspen and Jack Pine by blocking the sunlight available to these species. By 70 years following a burn, these forests are dominated by Black Spruce once again," Litvak said.

Stands less than 20 years old store less carbon than older trees because they lack sufficient leaf area for rapid carbon accumulation. Carbon storage is highest in stands 20-50 years old that are dominated by rapidly growing aspen trees that take up carbon at higher rates than black spruce and jack pine trees.

"Stands [of trees] older than 70 years are dominated by black spruce trees and thick moss cover that ‘exhale and inhale’ equal amounts of carbon. That means stands older than 70 years are in near carbon balance with the atmosphere," she said.

Knowing the rate at which trees respire will help scientists to better estimate the trees’ contributions to the global carbon cycle. This is especially important because of the changing climate. "Increased fire frequency, as predicted from global warming scenarios, has the potential to significantly impact the contribution boreal forests make to the global carbon cycle," Miller said.

NASA data from the Boreal Ecosystem-Atmosphere Study (BOREAS) was also used in the study. BOREAS was a large-scale international experiment in the northern forests of Canada between 1993 and 1996, whose goal was to improve understanding of interactions between the boreal forest and the atmosphere, and clarify their roles in global change.

This work was supported by NASA, the National Science Foundation, and U.S. Department of Energy.

Rob Gutro | NASA / Goddard Space Flight Cent
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0311firecarbon.html

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

Im Focus: NASA moon data provides more accurate 2017 eclipse path

On Monday, Aug. 21, 2017, millions in the U.S. will have their eyes to the sky as they witness a total solar eclipse. The moon's shadow will race across the United States, from Oregon to South Carolina. The path of this shadow, also known as the path of totality, is where observers will see the moon completely cover the sun. And thanks to elevation data of the moon from NASA's Lunar Reconnaissance Orbiter, or LRO, coupled with detailed NASA topography data of Earth, we have the most accurate maps of the path of totality for any eclipse to date.

On Monday, Aug. 21, 2017, millions in the U.S. will have their eyes to the sky as they witness a total solar eclipse. The moon's shadow will race across the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

What makes erionite carcinogenic?

13.01.2017 | Earth Sciences

Modeling magma to find copper

13.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>