Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire Frequency Determines Forest Carbon Storage

24.03.2003


Canadian land cover map / study areas

The BOREAS-follow on Project to determine how carbon storage in boreal forests change in response to wildfire was set in the northern edge of the Canadian boreal forest in Manitoba, Canada, the former Northern Study Area (NSA) in Thompson Manitoba from BOREAS. CREDIT: Canadian Model Forest Program


Northern study area

This satellite image of the Northern Study Area, Manitoba, Canada was taken by the Landsat satellite on July 25, 1990. The bodies of water can be seen in blue. The landscape is a mosaic of different aged stands that are in various stages of recovery from wildfire. Each of the colored patches corresponds to a different aged stand. The years corresponding to the areas indicate the last year of forest fire. CREDIT: NASA/USGS


Scientists studying trees ranging from saplings to 130 years old in Canada’s northern forests have discovered that the period since a fire last swept through an area determines how much carbon the forest can store. Twenty to forty year old stands absorb more carbon than those 70 years old and older, despite being smaller and having less biomass or plant material.

Boreal or northern forests account for close to 25 percent of total carbon stored in vegetation and soils in the Earth’s biosphere. Wildfires burn down individual areas every 40 to 250 years and are an important part of this ecosystem. Whether or not these forests are likely to lower or raise levels of carbon dioxide in the atmosphere depends on how these carbon reserves respond to, and recover from, both climate change and disturbances such as wildfires.

NASA funded part of this study under its Earth Science Enterprise (ESE), whose mission is to understand and protect our home planet. Earth Science in NASA seeks to understand trends in land cover and land use, such as forest fires, that drive global climate. Another Earth Science program objective is to understand the Earth system’s response to natural and human-induced changes, and effects on global carbon cycle.



Marcy Litvak, plant ecologist at the University of Texas at Austin and lead author of the study that appeared in a recent issue of the Journal of Geophysical Research -
Atmospheres, said that the ability of tree stands to store carbon changes as they regenerate from fire. Forests will store more or less carbon depending on the dominant tree species, the amount of moss cover, and changes in forest structure due to fire. Those factors determine how much total carbon is exchanged with the atmosphere.

Carbon is transferred from the atmosphere to the forest through the process of photosynthesis. Carbon is returned to the atmosphere through the process of respiration as soil microorganisms decompose dead organic matter, and trees and mosses metabolize the products of photosynthesis. It is the balance between these two processes, taking in carbon during photosynthesis and "exhaling" carbon through respiration, that determines how much carbon is stored in the forest.

Between 1999-2000, Litvak and her colleagues, Scott Miller and Michael Goulden of the University of California, Irvine, and Steve Wofsy of Harvard University, used solar-powered anemometers and infrared gas analyzers mounted on towers to monitor carbon emissions over five black spruce stands in Manitoba, Canada. These stands ranged in age from 11 to 130 years old. Results indicate that the ability to store carbon is almost zero in the 11 year-old stand, increases to a maximum in the 36 year-old stand, then gradually falls back down to zero in the 130-year old stand. They concluded that most of the net carbon absorption appears to take place from 20-50 years after a fire.

"Seedlings of Aspen, Jack Pine, and Black Spruce all regenerate simultaneously following wildfire in areas once dominated by mature black spruce forests in this region of Manitoba. Aspen and Jack Pine tend to dominate in young stands where light is not limited. Black Spruce grow the slowest, but eventually out-compete the Aspen and Jack Pine by blocking the sunlight available to these species. By 70 years following a burn, these forests are dominated by Black Spruce once again," Litvak said.

Stands less than 20 years old store less carbon than older trees because they lack sufficient leaf area for rapid carbon accumulation. Carbon storage is highest in stands 20-50 years old that are dominated by rapidly growing aspen trees that take up carbon at higher rates than black spruce and jack pine trees.

"Stands [of trees] older than 70 years are dominated by black spruce trees and thick moss cover that ‘exhale and inhale’ equal amounts of carbon. That means stands older than 70 years are in near carbon balance with the atmosphere," she said.

Knowing the rate at which trees respire will help scientists to better estimate the trees’ contributions to the global carbon cycle. This is especially important because of the changing climate. "Increased fire frequency, as predicted from global warming scenarios, has the potential to significantly impact the contribution boreal forests make to the global carbon cycle," Miller said.

NASA data from the Boreal Ecosystem-Atmosphere Study (BOREAS) was also used in the study. BOREAS was a large-scale international experiment in the northern forests of Canada between 1993 and 1996, whose goal was to improve understanding of interactions between the boreal forest and the atmosphere, and clarify their roles in global change.

This work was supported by NASA, the National Science Foundation, and U.S. Department of Energy.

Rob Gutro | NASA / Goddard Space Flight Cent
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0311firecarbon.html

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>