Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic force microscope powerful new tool for measurement of particle attraction

24.03.2003


Aim is better filters for contaminants



Tracy L. Cail, a Ph.D. student in geological sciences at Virginia Tech, is developing a new method for calculating sticking efficiency at the nanoscale with the aim of someday developing improved filters for removing contaminants from solutions, such as bacteria from groundwater. She will present her research at the 225th American Chemical Society national meeting March 23-27 in New Orleans.

In the past, scientists have used theoretical equations or bulk-scale column experiments to determine how to remove contamination. "Neither approach explains what happens at the smallest scale," says Cail. And the results of column experiments, in which water composition is studied before and after it passes through a soil-packed column, can not be extrapolated for different environmental conditions such as pH fluctuations and changes in concentration, she explains.


Cail is using an atomic force microscope (AFM) to measure the attraction between a silica glass collector surface and a 2-micron sphere of carboxylated polystyrene, which has the size, shape, and surface charge similar to bacteria. The micro spheres are attached to a cantilever developed for just such AFM studies. "The AFM measures the forces of attraction and repulsion between the particle and the collector as the surfaces are moved toward each other and then apart.We mathematically determine the energy of interaction, which allows us to quantify how much they want to stick," says Cail.

With this experimental design, various environmental conditions can be simulated and their effect on sticking efficiencies can readily be determined.

The collector material of silica glass is similar to the quartz sand present in many soils. Cail plans to introduce actual bacteria in future experiments, but the focus of her presentation at ACS is the new method of measurement. "Sticking efficiency has not been measured experimentally before using the AFM.

The paper, "Experimentally derived sticking efficiency of micro spheres using atomic force microscopy: Toward a better understanding of particle transport in porous media (ENVR 38)," will be presented at 4 p.m. on Sunday, March 23, in room 389 of the Morial Convention Center, New Orleans.

Cail, who is from Moncton, New Brunswick, Canada, did her undergraduate work at St Francis Xavier University and her master’s degree work at the University of Nevada, Las Vegas.


Reach Tracy Cail at her lab at 540-231-3358 or tcail@vt.edu.
PR CONTACT: Susan Trulove 540-231-5646 strulove@vt.edu


Tracy Cail | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>