Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists offer distilleries a leaner, cleaner solution

05.03.2003


Biologists in Manchester have helped create a breakthrough in alcohol production that could save industry millions of pounds and help clean up the environment.


Many distilleries across Europe still rely on 19th century technology pioneered by Louis Pasteur, so the invention of a vastly more efficient fermenting system offers exciting possibilities.

The technology, developed at Manchester Metropolitan University (MMU), also allows continuous production of the chemical, an improvement from the current process whereby ethanol (or ethyl alcohol) is produced in batches.

MMU, TTZ in Germany, INETI and the University of Coimbra in Portugal will develop the system, which will be commercialised and used by a consortium of six companies from the UK, Spain, Portugal and Germany. The £640,000 project is backed by a £320,000 grant from the European Union.



Dr Mike Dempsey, whose research on adhesive organisms and fluidised bed fermentation is central to the technique, said: "The new process involves the way organisms are used in the fermenter. By using fluidised beds we can increase cell concentration tenfold with a similar increase in the rate of production. Coupled with continuous fermentation, this should raise ethyl alcohol productivity at least 20 fold.

The development has implications for both commercial and environmental costs. This is because the process will use agricultural and food industry waste as a source of sugar, and the product ethanol can be used as a motor fuel or fuel-extender. Not only will any pollution (ie in rivers as effluent) by the original wastes be eliminated but also that caused by toxic fuel-extenders, such as MBTE.

The use of ethanol as a fuel will not make a net contribution to emissions of carbon dioxide (CO2, a greenhouse gas), because the crops from which the wastes come took it in during photosynthesis. This is what Dr Dempsey calls the "fuel ethanol diamond"; where CO2 take up by plants from air is converted to sugars, which are fermented to ethanol and end up back in the air when it is burnt.

MMU will receive £60,000, including a new post-doctoral researcher, to carry out research in the selection of microbes and in screening for adhesive, ethanol-producing strains suitable for the fluidised bed process.

Gareth Hollyman | alfa
Further information:
http://www.mmu.ac.uk/news/news_release.php?number=82

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>