Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists offer distilleries a leaner, cleaner solution

05.03.2003


Biologists in Manchester have helped create a breakthrough in alcohol production that could save industry millions of pounds and help clean up the environment.


Many distilleries across Europe still rely on 19th century technology pioneered by Louis Pasteur, so the invention of a vastly more efficient fermenting system offers exciting possibilities.

The technology, developed at Manchester Metropolitan University (MMU), also allows continuous production of the chemical, an improvement from the current process whereby ethanol (or ethyl alcohol) is produced in batches.

MMU, TTZ in Germany, INETI and the University of Coimbra in Portugal will develop the system, which will be commercialised and used by a consortium of six companies from the UK, Spain, Portugal and Germany. The £640,000 project is backed by a £320,000 grant from the European Union.



Dr Mike Dempsey, whose research on adhesive organisms and fluidised bed fermentation is central to the technique, said: "The new process involves the way organisms are used in the fermenter. By using fluidised beds we can increase cell concentration tenfold with a similar increase in the rate of production. Coupled with continuous fermentation, this should raise ethyl alcohol productivity at least 20 fold.

The development has implications for both commercial and environmental costs. This is because the process will use agricultural and food industry waste as a source of sugar, and the product ethanol can be used as a motor fuel or fuel-extender. Not only will any pollution (ie in rivers as effluent) by the original wastes be eliminated but also that caused by toxic fuel-extenders, such as MBTE.

The use of ethanol as a fuel will not make a net contribution to emissions of carbon dioxide (CO2, a greenhouse gas), because the crops from which the wastes come took it in during photosynthesis. This is what Dr Dempsey calls the "fuel ethanol diamond"; where CO2 take up by plants from air is converted to sugars, which are fermented to ethanol and end up back in the air when it is burnt.

MMU will receive £60,000, including a new post-doctoral researcher, to carry out research in the selection of microbes and in screening for adhesive, ethanol-producing strains suitable for the fluidised bed process.

Gareth Hollyman | alfa
Further information:
http://www.mmu.ac.uk/news/news_release.php?number=82

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>