Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists offer distilleries a leaner, cleaner solution

05.03.2003


Biologists in Manchester have helped create a breakthrough in alcohol production that could save industry millions of pounds and help clean up the environment.


Many distilleries across Europe still rely on 19th century technology pioneered by Louis Pasteur, so the invention of a vastly more efficient fermenting system offers exciting possibilities.

The technology, developed at Manchester Metropolitan University (MMU), also allows continuous production of the chemical, an improvement from the current process whereby ethanol (or ethyl alcohol) is produced in batches.

MMU, TTZ in Germany, INETI and the University of Coimbra in Portugal will develop the system, which will be commercialised and used by a consortium of six companies from the UK, Spain, Portugal and Germany. The £640,000 project is backed by a £320,000 grant from the European Union.



Dr Mike Dempsey, whose research on adhesive organisms and fluidised bed fermentation is central to the technique, said: "The new process involves the way organisms are used in the fermenter. By using fluidised beds we can increase cell concentration tenfold with a similar increase in the rate of production. Coupled with continuous fermentation, this should raise ethyl alcohol productivity at least 20 fold.

The development has implications for both commercial and environmental costs. This is because the process will use agricultural and food industry waste as a source of sugar, and the product ethanol can be used as a motor fuel or fuel-extender. Not only will any pollution (ie in rivers as effluent) by the original wastes be eliminated but also that caused by toxic fuel-extenders, such as MBTE.

The use of ethanol as a fuel will not make a net contribution to emissions of carbon dioxide (CO2, a greenhouse gas), because the crops from which the wastes come took it in during photosynthesis. This is what Dr Dempsey calls the "fuel ethanol diamond"; where CO2 take up by plants from air is converted to sugars, which are fermented to ethanol and end up back in the air when it is burnt.

MMU will receive £60,000, including a new post-doctoral researcher, to carry out research in the selection of microbes and in screening for adhesive, ethanol-producing strains suitable for the fluidised bed process.

Gareth Hollyman | alfa
Further information:
http://www.mmu.ac.uk/news/news_release.php?number=82

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>