Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system recovers and reuses electronic wastes

04.03.2003


Concern is rising among governments worldwide about electronic wastes -- discarded computers, televisions, cell phones, audio equipment and batteries -- leaching lead and other substances that may seep into groundwater supplies.



Just one color computer monitor or television can contain up to eight pounds of lead. Consider that amount in light of the estimated 12 million tons of "e-wastes" that the U.S. Environmental Protection Agency estimates may soon be dumped into American landfills.

Worry has reached such a level that some European countries are forcing manufacturers to take back discarded electronics, and in the United States, California and Massachusetts have banned their disposal in municipal solid waste landfills. But some officials are looking beyond these stop-gap measures to find a solution.


A study under way at the Georgia Institute of Technology may offer a model for other states and nations. Researchers are conducting the study in cooperation with the Pollution Prevention Assistance Division of the Georgia Department of Natural Resources (DNR), which is funding the project with additional support from the National Science Foundation.

Researchers have devised a "reverse production" system that creates infrastructure to recover and reuse every material contained within e-wastes -- metals such as lead, copper, aluminum and gold, and various plastics, glass and wire. Such "closed loop" manufacturing and recovery offers a win-win situation for everyone, researchers said. Less of the Earth will be mined for raw materials, and groundwater will be protected.

But this simple concept requires a lot of brand new thinking, said Jane Ammons, a professor in the School of Industrial and Systems Engineering and a governor-appointed member of the Georgia Computer Equipment Disposal and Recycling Council. She and colleague Matthew Realff, an associate professor in the School of Chemical Engineering, are devising methods to plan reverse production systems that will collect e-trash, tear apart devices ("de-manufacture it") and use the components and materials again -- all while making the process economically viable.

Though this system is being designed for Georgia, its application elsewhere has sparked interest nationally and internationally, the researchers reported. Officials in Taiwan and Belgium have consulted with the researchers, as have several multi-national electronics and logistics firms. Also, the researchers’ work on carpet recycling was used in testimony to Congress and helped in developing an industry coalition that has the goal of diverting 25 percent of carpet from landfills by 2012.

The project is building on other research that Ammons and Realff are conducting. Their fundamental work in reverse production systems has been funded by the National Science Foundation. Ammons’ related research is funded by the National Science Foundation (NSF) as one of four ADVANCE chaired professors at Georgia Tech. ADVANCE is a program to improve the career success of women faculty in science and engineering. Also, Ammons and Realff are applying their findings from other studies to the e-waste project. For example, they have modeled the regional and national infrastructure necessary for cost-effective and environmentally beneficial collection and recycling of carpet to extract nylon fiber, caprolactam monomer and other products.

"It’s a matter of seeing a waste as a resource," Ammons said.

Key to their approach is the ongoing development of a mathematical model to predict the economic success of recovery efforts. Modeling is necessary given the uncertainty inherent in a host of variables -- quantities, locations, types and conditions of old parts, and numerous aspects of transportation (distance, costs of fuel, labor, insurance, etc.). Ammons and Realff have involved experts, many of them from Georgia recycling and salvaging businesses, to probe the complicated interplay between manufacturing, de-manufacturing and logistics. "Strong leverage comes from our new mathematical models," Ammons said. "They allow us to ask really good questions while designing the infrastructure for these systems."

Realff’s expertise is the design and operation of processes that recover the maximum amount possible of useable product from e-waste. He has devised ways to separate metals, as well as different qualities of plastic from crushed, ground-up components. Realff and his students measure density and surface properties in novel ways. For example, they measure how far pieces fly off a conveyer belt and how well air bubbles stick to them. This information enables more accurate representations of recycling tasks to be incorporated into the strategic models and the synthesis of lower-cost alternatives, Realff explained.

"For chemical engineers, this is a challenging problem that has not been widely studied," he said. "It’s exciting. We are creating a new architecture for separation systems." From this work, new industries and an infrastructure can be created to recover value not only from e-waste, but also from automobiles and other durable goods, Realff added.

Now into the second and final year of the Georgia project, Ammons, Realff and their students are tweaking and testing their mathematical model (which for some problems has required computers to determine more than 300,000 variables) by testing hundreds of "what-if" scenarios. The researchers are continuing their collaboration under a new grant from the National Science Foundation; it will help broaden their model to other reverse production system problems.

Meanwhile, the DNR is eagerly awaiting the final results of the study.

"This work is tremendously important. E-waste poses potential serious environmental problems if it continues to go into landfills," said Chuck Boelkins, a DNR resource recovery specialist. The Georgia recovery system "may become a national model. It could be key to the future of responsible environmental management."


For technical information, contact:

1. Jane Ammons, 404-894-2364 or jane.ammons@isye.gatech.edu
2. Matthew Realff, 404-894-1834 or matthew.realff@che.gatech.edu)


Jane Sanders | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

These could revolutionize the world

24.05.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>