Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system recovers and reuses electronic wastes

04.03.2003


Concern is rising among governments worldwide about electronic wastes -- discarded computers, televisions, cell phones, audio equipment and batteries -- leaching lead and other substances that may seep into groundwater supplies.



Just one color computer monitor or television can contain up to eight pounds of lead. Consider that amount in light of the estimated 12 million tons of "e-wastes" that the U.S. Environmental Protection Agency estimates may soon be dumped into American landfills.

Worry has reached such a level that some European countries are forcing manufacturers to take back discarded electronics, and in the United States, California and Massachusetts have banned their disposal in municipal solid waste landfills. But some officials are looking beyond these stop-gap measures to find a solution.


A study under way at the Georgia Institute of Technology may offer a model for other states and nations. Researchers are conducting the study in cooperation with the Pollution Prevention Assistance Division of the Georgia Department of Natural Resources (DNR), which is funding the project with additional support from the National Science Foundation.

Researchers have devised a "reverse production" system that creates infrastructure to recover and reuse every material contained within e-wastes -- metals such as lead, copper, aluminum and gold, and various plastics, glass and wire. Such "closed loop" manufacturing and recovery offers a win-win situation for everyone, researchers said. Less of the Earth will be mined for raw materials, and groundwater will be protected.

But this simple concept requires a lot of brand new thinking, said Jane Ammons, a professor in the School of Industrial and Systems Engineering and a governor-appointed member of the Georgia Computer Equipment Disposal and Recycling Council. She and colleague Matthew Realff, an associate professor in the School of Chemical Engineering, are devising methods to plan reverse production systems that will collect e-trash, tear apart devices ("de-manufacture it") and use the components and materials again -- all while making the process economically viable.

Though this system is being designed for Georgia, its application elsewhere has sparked interest nationally and internationally, the researchers reported. Officials in Taiwan and Belgium have consulted with the researchers, as have several multi-national electronics and logistics firms. Also, the researchers’ work on carpet recycling was used in testimony to Congress and helped in developing an industry coalition that has the goal of diverting 25 percent of carpet from landfills by 2012.

The project is building on other research that Ammons and Realff are conducting. Their fundamental work in reverse production systems has been funded by the National Science Foundation. Ammons’ related research is funded by the National Science Foundation (NSF) as one of four ADVANCE chaired professors at Georgia Tech. ADVANCE is a program to improve the career success of women faculty in science and engineering. Also, Ammons and Realff are applying their findings from other studies to the e-waste project. For example, they have modeled the regional and national infrastructure necessary for cost-effective and environmentally beneficial collection and recycling of carpet to extract nylon fiber, caprolactam monomer and other products.

"It’s a matter of seeing a waste as a resource," Ammons said.

Key to their approach is the ongoing development of a mathematical model to predict the economic success of recovery efforts. Modeling is necessary given the uncertainty inherent in a host of variables -- quantities, locations, types and conditions of old parts, and numerous aspects of transportation (distance, costs of fuel, labor, insurance, etc.). Ammons and Realff have involved experts, many of them from Georgia recycling and salvaging businesses, to probe the complicated interplay between manufacturing, de-manufacturing and logistics. "Strong leverage comes from our new mathematical models," Ammons said. "They allow us to ask really good questions while designing the infrastructure for these systems."

Realff’s expertise is the design and operation of processes that recover the maximum amount possible of useable product from e-waste. He has devised ways to separate metals, as well as different qualities of plastic from crushed, ground-up components. Realff and his students measure density and surface properties in novel ways. For example, they measure how far pieces fly off a conveyer belt and how well air bubbles stick to them. This information enables more accurate representations of recycling tasks to be incorporated into the strategic models and the synthesis of lower-cost alternatives, Realff explained.

"For chemical engineers, this is a challenging problem that has not been widely studied," he said. "It’s exciting. We are creating a new architecture for separation systems." From this work, new industries and an infrastructure can be created to recover value not only from e-waste, but also from automobiles and other durable goods, Realff added.

Now into the second and final year of the Georgia project, Ammons, Realff and their students are tweaking and testing their mathematical model (which for some problems has required computers to determine more than 300,000 variables) by testing hundreds of "what-if" scenarios. The researchers are continuing their collaboration under a new grant from the National Science Foundation; it will help broaden their model to other reverse production system problems.

Meanwhile, the DNR is eagerly awaiting the final results of the study.

"This work is tremendously important. E-waste poses potential serious environmental problems if it continues to go into landfills," said Chuck Boelkins, a DNR resource recovery specialist. The Georgia recovery system "may become a national model. It could be key to the future of responsible environmental management."


For technical information, contact:

1. Jane Ammons, 404-894-2364 or jane.ammons@isye.gatech.edu
2. Matthew Realff, 404-894-1834 or matthew.realff@che.gatech.edu)


Jane Sanders | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>