Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system recovers and reuses electronic wastes

04.03.2003


Concern is rising among governments worldwide about electronic wastes -- discarded computers, televisions, cell phones, audio equipment and batteries -- leaching lead and other substances that may seep into groundwater supplies.



Just one color computer monitor or television can contain up to eight pounds of lead. Consider that amount in light of the estimated 12 million tons of "e-wastes" that the U.S. Environmental Protection Agency estimates may soon be dumped into American landfills.

Worry has reached such a level that some European countries are forcing manufacturers to take back discarded electronics, and in the United States, California and Massachusetts have banned their disposal in municipal solid waste landfills. But some officials are looking beyond these stop-gap measures to find a solution.


A study under way at the Georgia Institute of Technology may offer a model for other states and nations. Researchers are conducting the study in cooperation with the Pollution Prevention Assistance Division of the Georgia Department of Natural Resources (DNR), which is funding the project with additional support from the National Science Foundation.

Researchers have devised a "reverse production" system that creates infrastructure to recover and reuse every material contained within e-wastes -- metals such as lead, copper, aluminum and gold, and various plastics, glass and wire. Such "closed loop" manufacturing and recovery offers a win-win situation for everyone, researchers said. Less of the Earth will be mined for raw materials, and groundwater will be protected.

But this simple concept requires a lot of brand new thinking, said Jane Ammons, a professor in the School of Industrial and Systems Engineering and a governor-appointed member of the Georgia Computer Equipment Disposal and Recycling Council. She and colleague Matthew Realff, an associate professor in the School of Chemical Engineering, are devising methods to plan reverse production systems that will collect e-trash, tear apart devices ("de-manufacture it") and use the components and materials again -- all while making the process economically viable.

Though this system is being designed for Georgia, its application elsewhere has sparked interest nationally and internationally, the researchers reported. Officials in Taiwan and Belgium have consulted with the researchers, as have several multi-national electronics and logistics firms. Also, the researchers’ work on carpet recycling was used in testimony to Congress and helped in developing an industry coalition that has the goal of diverting 25 percent of carpet from landfills by 2012.

The project is building on other research that Ammons and Realff are conducting. Their fundamental work in reverse production systems has been funded by the National Science Foundation. Ammons’ related research is funded by the National Science Foundation (NSF) as one of four ADVANCE chaired professors at Georgia Tech. ADVANCE is a program to improve the career success of women faculty in science and engineering. Also, Ammons and Realff are applying their findings from other studies to the e-waste project. For example, they have modeled the regional and national infrastructure necessary for cost-effective and environmentally beneficial collection and recycling of carpet to extract nylon fiber, caprolactam monomer and other products.

"It’s a matter of seeing a waste as a resource," Ammons said.

Key to their approach is the ongoing development of a mathematical model to predict the economic success of recovery efforts. Modeling is necessary given the uncertainty inherent in a host of variables -- quantities, locations, types and conditions of old parts, and numerous aspects of transportation (distance, costs of fuel, labor, insurance, etc.). Ammons and Realff have involved experts, many of them from Georgia recycling and salvaging businesses, to probe the complicated interplay between manufacturing, de-manufacturing and logistics. "Strong leverage comes from our new mathematical models," Ammons said. "They allow us to ask really good questions while designing the infrastructure for these systems."

Realff’s expertise is the design and operation of processes that recover the maximum amount possible of useable product from e-waste. He has devised ways to separate metals, as well as different qualities of plastic from crushed, ground-up components. Realff and his students measure density and surface properties in novel ways. For example, they measure how far pieces fly off a conveyer belt and how well air bubbles stick to them. This information enables more accurate representations of recycling tasks to be incorporated into the strategic models and the synthesis of lower-cost alternatives, Realff explained.

"For chemical engineers, this is a challenging problem that has not been widely studied," he said. "It’s exciting. We are creating a new architecture for separation systems." From this work, new industries and an infrastructure can be created to recover value not only from e-waste, but also from automobiles and other durable goods, Realff added.

Now into the second and final year of the Georgia project, Ammons, Realff and their students are tweaking and testing their mathematical model (which for some problems has required computers to determine more than 300,000 variables) by testing hundreds of "what-if" scenarios. The researchers are continuing their collaboration under a new grant from the National Science Foundation; it will help broaden their model to other reverse production system problems.

Meanwhile, the DNR is eagerly awaiting the final results of the study.

"This work is tremendously important. E-waste poses potential serious environmental problems if it continues to go into landfills," said Chuck Boelkins, a DNR resource recovery specialist. The Georgia recovery system "may become a national model. It could be key to the future of responsible environmental management."


For technical information, contact:

1. Jane Ammons, 404-894-2364 or jane.ammons@isye.gatech.edu
2. Matthew Realff, 404-894-1834 or matthew.realff@che.gatech.edu)


Jane Sanders | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>