Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URI Chemical Oceanographer Analyzes the Effects of pH on Coastal Marine Phytoplankton

07.02.2003


A largely overlooked but significant factor in marine ecology concerns the effects of variable pH on the growth rate and abundance of coastal marine phytoplankton, the base of the marine food chain in productive coastal waters. The pH of the open ocean varies very little. This has led to the common, but faulty, assumption that the pH of coastal waters also varies little and is unimportant.



In an article in a recent issue of the scientific journal Marine Ecology Progress Series, URI Graduate School of Oceanography marine scientist Dr. Kenneth Hinga analyzed all the available, albeit limited and scattered, studies conducted in the laboratory and in the field on the effect of pH on marine phytoplankton in coastal waters. pH is a measure of acidity or alkalinity of water.

The normal pH of open ocean seawater is about 8.1, or slightly alkaline. Hinga found that the pH of seawater in typical estuaries and coastal waters routinely varies from pH 7.5 to 8.5 with occasional occurrences of pH greater than 9 or less than 7. This is significant because pH levels routinely found in our coastal waters affect the growth rates of many species. At the more extreme pH values, some species cannot grow at all and only species with a tolerance for high or low pH would grow, eventually dominating the community.


Where a coastal ecosystem has a regular pH cycle, pH may play a role in determining the timing of occurrence of species and the total abundance of blooms and the amount of plant growth. Phytoplankton communities were found to fix carbon only half as fast at pH 9 compared to those at pH 8. In some experiments, the abundance of certain species of dinoflagellates (the phytoplankton group responsible for red tides) correlated strongly with high pH. The significance of pH variability may also be increasing as pH variability increases with increased loadings of plant nutrients to the coastal environments. Increased nutrient loading (from sewage treatment plants, the use of fertilizers, and from atmospheric deposition) to many coastal environments over the last century is well documented.

"The existing data suggest that scientists and coastal managers should not exclude pH as a factor in coastal marine phytoplankton ecology," said Hinga. "It seems probable that upon further study, pH will prove to be a non-trivial factor in phytoplankton dynamics in coastal environments."

The study was supported by the National Oceanic and Atmospheric Administration (NOAA) Coastal Ocean Program.

The URI Graduate School of Oceanography is one of the country’s largest marine science education programs, and one of the world’s foremost marine research institutions. Founded in 1961 in Narragansett, RI, GSO serves a community of scientists who are researching the causes of and solutions to such problems as acid rain, harmful algal blooms, global warming, air and water pollution, oil spills, overfishing, and coastal erosion. GSO is home to the Coastal Institute, the Coastal Resources Center, Rhode Island Sea Grant, the Institute for Archaeological Oceanography, and the National Sea Grant Library.

For more information about this site, contact jredlich@advance.uri.edu
File last updated: Thursday, February 6, 2003

Lisa Cugini | University of Rhode Island
Further information:
http://www.news.uri.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>