Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanocluster catalysts aim to clean up fossil fuels

05.02.2003


Scientists from the University of Aarhus, Denmark, have developed a technique that could improve the commercial processes used to remove environmentally harmful sulphur from fossil fuels. This is currently done using a catalyst, which binds the harmful sulphur molecules to it, in much the same way as a car’s catalytic converter works.



In a paper published today in the Institute of Physics journal Nanotechnology the Danish team explain how they have studied the chemical reactions which occur when the industrial catalyst combines with sulphur-based molecules in the oil. Until now these reactions have not been properly understood as they occur on an atomic scale. The researchers overcame this problem by making a model of the catalyst and observing these nanoscale reactions using a technique called scanning tunnelling microscopy (STM).

Dr Jeppe Lauritsen, a member of the research team from the University of Aarhus, said: "Throughout the last century most catalysts have been developed by costly time-consuming trial-and-error methods. Nanotechnology is about to change this, since we can now build and view matter directly on the nanoscale."


The commercial catalysts used to remove sulphur contain tiny metal-sulphide nanoclusters. The particular metal-suphide complex used in the team’s nanocluster model is usually fairly non-reactive. However the nanoclusters are so small that the scientists found that at the edges, the clusters behaved unexpectedly. Dr Lauritsen said: "Surprisingly, the nanocluster edges behave just like ordinary catalytically active metals. This metallic reactive behaviour is shown in the STM images as a bright brim extending around the cluster edges."

The team’s model shows how the first and most difficult step in the catalytic process, that removes sulphur from fossil fuels, occurs. They now plan to extend their model to provide information on the rest of the process. Through their collaboration with catalyst company Haldor TopsØe A/S, the team aims to provide the basis for the manufacture of better catalysts for the production of clean transport fuels, thereby helping to solve one of our most important environmental problems.

Joanne Aslett | alfa
Further information:
http://www.iop.org/journals/nano

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>