Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer model helps combat air pollution across Europe

29.01.2003


The key role of multidisciplinary research in developing a landmark intergovernmental strategy to combat air pollution across Europe will be considered by Professor Helen ApSimon of Imperial College London in her inaugural lecture, A lot of Hot Air – Transboundary Air Pollution Over Europe.



The new Professor of Air Pollution Studies will focus on how her research using computer modelling of air pollution contributed to the formulation of the Gothenburg protocol under the United Nations’ Convention on Long-Range Transboundary Air Pollution.

“The UN’s Convention successfully addresses a complex combination of pollutants with wide ranging effects,” said Professor ApSimon, who is based in the Department of Environmental Science and Technology.


“It has contributed to the development of international environment regulations and has created the essential framework for controlling and reducing the damage to human health and the environment caused by transboundary air pollution.”

The Gothenburg protocol, introduced in 1999, calls for cuts in emissions from four major pollutants: sulphur dioxide, nitrogen oxides, volatile organic compounds and ammonia, by 2010, from their 1990 levels.

Once fully implemented, it is estimated the Protocol will reduce premature deaths resulting from ozone and particle matter exposure by approximately 47,000. The European treaty should also ensure over the next 15 years sulphur pollution from factories and power stations will drop to around 10 per cent of 1980 levels.

Working extensively over the past 12 years for Task Forces under the UN’s Convention, Professor ApSimon initially conducted independent modelling to analyse emission reduction strategies and develop cost effective solutions.

“By having an independent model we were able to examine many ‘what if’ scenarios and investigate assumptions and uncertainties,” said Professor ApSimon.

“We also did a lot of work on ammonia as a pollutant, for which the uncertainties were much greater. In this way we contributed to far more robust proposals for emission reductions as a basis for negotiation between member countries.”

Data collected from Professor ApSimon’s model was then collated with information yielded from the official UN model to create an ‘Integrated Assessment Model’. This created a fuller picture of potential emission reduction strategies by comparing the costs and benefits for different countries.

“Integrated assessment modelling integrates information on pollutant sources and emissions, the pattern of atmospheric transport of those emissions across Europe to affect sensitive ecosystems and the criteria for protecting these sensitive targets. From this information the models derive emission reductions across the different countries which meet targets for improved environmental protection at minimum cost,” explained Professor ApSimon.

“This approach is now being adopted enthusiastically by the European Commission, and I hope I will contribute to reaching agreement on other international pollution problems.”

Professor ApSimon added: “I feel honoured to have been appointed to this rank at Imperial College, and thankful to the wide range of people with whom I have worked with from very different scientific disciplines, who have helped me to achieve it.”

Judith H Moore | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Desert ants cannot be fooled

23.11.2017 | Life Sciences

By saving cost and energy, the lighting revolution may increase light pollution

23.11.2017 | Earth Sciences

Retreating permafrost coasts threaten the fragile Arctic environment

23.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>