Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer model helps combat air pollution across Europe

29.01.2003


The key role of multidisciplinary research in developing a landmark intergovernmental strategy to combat air pollution across Europe will be considered by Professor Helen ApSimon of Imperial College London in her inaugural lecture, A lot of Hot Air – Transboundary Air Pollution Over Europe.



The new Professor of Air Pollution Studies will focus on how her research using computer modelling of air pollution contributed to the formulation of the Gothenburg protocol under the United Nations’ Convention on Long-Range Transboundary Air Pollution.

“The UN’s Convention successfully addresses a complex combination of pollutants with wide ranging effects,” said Professor ApSimon, who is based in the Department of Environmental Science and Technology.


“It has contributed to the development of international environment regulations and has created the essential framework for controlling and reducing the damage to human health and the environment caused by transboundary air pollution.”

The Gothenburg protocol, introduced in 1999, calls for cuts in emissions from four major pollutants: sulphur dioxide, nitrogen oxides, volatile organic compounds and ammonia, by 2010, from their 1990 levels.

Once fully implemented, it is estimated the Protocol will reduce premature deaths resulting from ozone and particle matter exposure by approximately 47,000. The European treaty should also ensure over the next 15 years sulphur pollution from factories and power stations will drop to around 10 per cent of 1980 levels.

Working extensively over the past 12 years for Task Forces under the UN’s Convention, Professor ApSimon initially conducted independent modelling to analyse emission reduction strategies and develop cost effective solutions.

“By having an independent model we were able to examine many ‘what if’ scenarios and investigate assumptions and uncertainties,” said Professor ApSimon.

“We also did a lot of work on ammonia as a pollutant, for which the uncertainties were much greater. In this way we contributed to far more robust proposals for emission reductions as a basis for negotiation between member countries.”

Data collected from Professor ApSimon’s model was then collated with information yielded from the official UN model to create an ‘Integrated Assessment Model’. This created a fuller picture of potential emission reduction strategies by comparing the costs and benefits for different countries.

“Integrated assessment modelling integrates information on pollutant sources and emissions, the pattern of atmospheric transport of those emissions across Europe to affect sensitive ecosystems and the criteria for protecting these sensitive targets. From this information the models derive emission reductions across the different countries which meet targets for improved environmental protection at minimum cost,” explained Professor ApSimon.

“This approach is now being adopted enthusiastically by the European Commission, and I hope I will contribute to reaching agreement on other international pollution problems.”

Professor ApSimon added: “I feel honoured to have been appointed to this rank at Imperial College, and thankful to the wide range of people with whom I have worked with from very different scientific disciplines, who have helped me to achieve it.”

Judith H Moore | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>