Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds controlling phosphorus pollution in wetlands more important than believed

28.01.2003


A study led by a Duke University scientist suggests that the current emphasis on controlling upstream nitrogen pollution fails to adequately address the impacts on water quality of another potential contaminant, phosphorus. Thus, according to the scientists, current strategies used by environmental managers to control excessive nutrients in coastal wetlands may not achieve their intended goals.



The finding was published in a report in the Friday, Jan. 24, 2003, issue of the journal Science by Pallaoor Venkatesh Sundareshwar, a research associate and instructor at the Duke University Wetland Center in the Nicholas School of the Environment and Earth Sciences and co-authors James Morris and Brandon Fornwalt from the University of South Carolina at Columbia, and Eric Koepfler from Coastal Carolina University in Conway, S.C. The study was funded by the National Science Foundation and the National Oceanic and Atmospheric Administration.

Sundareshwar and his co-authors worked in a pristine wetland at the University of South Carolina’s Baruch Marine Field Laboratory, near Georgetown, where organisms’ natural interactions could be studied in the absence of human-caused pollution.


Both the phosphorus originating in upstream fertilizer applications, and the nitrogen derived from lawn and agricultural fertilizers or animal livestock operations can run off the land and flow downstream to shallow wetland estuaries, where they can cause algae blooms and fish kills that can threaten critical seafood nursery areas.

Managers have emphasized controlling nitrogen because that nutrient can lead to highly visible algae "blooms" in estuaries, which can turn the water green, Sundareshwar said in an interview. "People tend to be driven by what they see. But what we have shown is that’s not the whole truth; there is a major response to phosphorus by bacteria, which you can’t see."

By treating test plots with measured amounts of nitrogen and phosphorus, and comparing those results with untreated plots, the scientists learned that whereas plants visibly respond to nitrogen fertilization, bacteria in saturated wetland soils respond to phosphorus, not nitrogen. Bacterial responses to phosphorus pollution thus inconspicuously mimic the response of algae to nitrogen.

When nitrogen pollution leads to a surge of algae in coastal waters, subsequent algae die-offs release nutrients and carbon that the bacteria use for growth, and in doing so rob the water of needed oxygen, he added.

Extra phosphorus causes the bacteria to undergo a growth spurt and also consume any available organic matter, Sundareshwar said. In removing the carbon from the organic matter the bacteria take up oxygen as well. When coastal waters are over-enriched with phosphorus, bacteria can thus consume available carbon and remove enough oxygen from the water to potentially harm fish, even if there is no excess nitrogen in the water to cause algae blooms.

"Gone are the days of saying ’nitrogen, that’s the only thing,’ or ’phosphorus, that’s the only thing,’" Sundareshwar said. "I’m saying it’s high time we start looking at a more integrated approach to coastal management."

Not only do plants and bacteria in a coastal wetland respond to different nutrients; the tie between phosphorus supplies and bacterial growth also affects inputs and outputs of nitrogen in a wetland ecosystem, Sundareshwar and his co-authors report.

Among certain "legume" plants such as soybeans that grow on dry land, phosphorus fertilization increases nitrogen fixation by "symbiotic" bacteria residing in plant roots. These bacteria convert nitrogen from the air to a chemical form that acts as a plant fertilizer. Fixing that nitrogen is also an energy-intensive process requiring the symbiotic bacteria to use carbon from their host plants as an energy source.

In contrast to how symbiotic bacteria respond to phosphorus in dry land plants, Sundareshwar’s group found that adding extra phosphorus to a pristine coastal wetland can prompt the non-symbiotic bacteria that reside there to "shut down nitrogen fixation instead of promoting it," he said.

At Duke, Sundareshwar has designed a new course on the biogeochemistry of estuaries based on his personal studies. "As I teach this course, I always promote the integrated view, to get away from isolating-out nitrogen and phosphorus," he said.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>