Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds controlling phosphorus pollution in wetlands more important than believed

28.01.2003


A study led by a Duke University scientist suggests that the current emphasis on controlling upstream nitrogen pollution fails to adequately address the impacts on water quality of another potential contaminant, phosphorus. Thus, according to the scientists, current strategies used by environmental managers to control excessive nutrients in coastal wetlands may not achieve their intended goals.



The finding was published in a report in the Friday, Jan. 24, 2003, issue of the journal Science by Pallaoor Venkatesh Sundareshwar, a research associate and instructor at the Duke University Wetland Center in the Nicholas School of the Environment and Earth Sciences and co-authors James Morris and Brandon Fornwalt from the University of South Carolina at Columbia, and Eric Koepfler from Coastal Carolina University in Conway, S.C. The study was funded by the National Science Foundation and the National Oceanic and Atmospheric Administration.

Sundareshwar and his co-authors worked in a pristine wetland at the University of South Carolina’s Baruch Marine Field Laboratory, near Georgetown, where organisms’ natural interactions could be studied in the absence of human-caused pollution.


Both the phosphorus originating in upstream fertilizer applications, and the nitrogen derived from lawn and agricultural fertilizers or animal livestock operations can run off the land and flow downstream to shallow wetland estuaries, where they can cause algae blooms and fish kills that can threaten critical seafood nursery areas.

Managers have emphasized controlling nitrogen because that nutrient can lead to highly visible algae "blooms" in estuaries, which can turn the water green, Sundareshwar said in an interview. "People tend to be driven by what they see. But what we have shown is that’s not the whole truth; there is a major response to phosphorus by bacteria, which you can’t see."

By treating test plots with measured amounts of nitrogen and phosphorus, and comparing those results with untreated plots, the scientists learned that whereas plants visibly respond to nitrogen fertilization, bacteria in saturated wetland soils respond to phosphorus, not nitrogen. Bacterial responses to phosphorus pollution thus inconspicuously mimic the response of algae to nitrogen.

When nitrogen pollution leads to a surge of algae in coastal waters, subsequent algae die-offs release nutrients and carbon that the bacteria use for growth, and in doing so rob the water of needed oxygen, he added.

Extra phosphorus causes the bacteria to undergo a growth spurt and also consume any available organic matter, Sundareshwar said. In removing the carbon from the organic matter the bacteria take up oxygen as well. When coastal waters are over-enriched with phosphorus, bacteria can thus consume available carbon and remove enough oxygen from the water to potentially harm fish, even if there is no excess nitrogen in the water to cause algae blooms.

"Gone are the days of saying ’nitrogen, that’s the only thing,’ or ’phosphorus, that’s the only thing,’" Sundareshwar said. "I’m saying it’s high time we start looking at a more integrated approach to coastal management."

Not only do plants and bacteria in a coastal wetland respond to different nutrients; the tie between phosphorus supplies and bacterial growth also affects inputs and outputs of nitrogen in a wetland ecosystem, Sundareshwar and his co-authors report.

Among certain "legume" plants such as soybeans that grow on dry land, phosphorus fertilization increases nitrogen fixation by "symbiotic" bacteria residing in plant roots. These bacteria convert nitrogen from the air to a chemical form that acts as a plant fertilizer. Fixing that nitrogen is also an energy-intensive process requiring the symbiotic bacteria to use carbon from their host plants as an energy source.

In contrast to how symbiotic bacteria respond to phosphorus in dry land plants, Sundareshwar’s group found that adding extra phosphorus to a pristine coastal wetland can prompt the non-symbiotic bacteria that reside there to "shut down nitrogen fixation instead of promoting it," he said.

At Duke, Sundareshwar has designed a new course on the biogeochemistry of estuaries based on his personal studies. "As I teach this course, I always promote the integrated view, to get away from isolating-out nitrogen and phosphorus," he said.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>