Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two global pollutants work to offset each other, according to Colorado study

07.01.2003


University of Colorado at Boulder researchers have found, ironically, that two pollutants - carbon dioxide and hydrocarbons emitted from agricultural forest trees - offset each other somewhat in mitigating air quality problems.



Carbon dioxide, believed by scientists to be a major factor in greenhouse warming, has been shown to reduce "agriforest" emissions of hydrocarbons that contribute to ground-based ozone pollution, according to CU-Boulder doctoral candidate Todd Rosenstiel of the environmental, population and organismic, or EPO, biology department.

Commercial agriforests made up of trees including poplars, Eucalyptus and Acacia emit high levels of isoprene, a highly reactive chemical species believed to contribute heavily to ground-based ozone, said Rosenstiel, co-chief author of the study.


While this may seem like a good thing environmentally to some people, Rosenstiel is more cautious. "The effects of CO2 are unpredictable. The bigger picture is the rapidly growing amount of these agriforests worldwide emitting hydrocarbons like isoprene in much larger volumes.

"We still do not know enough about the basic chemistry and biochemistry of isoprene to predict what may happen in the future," Rosenstiel said. "One thing we have shown is that ’tweaking’ environmental conditions where such trees grow through changes in water consumption, temperature and soil conditions may have significant effects on isoprene emissions."

As people replace natural forests with agriforests, the species do produce significant amounts of hydrocarbons like isoprene," said Russell Monson, chair of CU-Boulder’s EPO biology department. "The news here is that we have found a situation where elevated CO2 concentrations work in a positive way to reduce pollution from isoprene, that combines with sunlight and vehicle and industrial pollution to form smog and related lung problems in people."

A paper on the subject was published electronically today by Nature magazine. The primary authors are Rosenstiel and Mark Potosnak of Columbia University, now with the National Center for Atmospheric Research in Boulder. Other authors include Kevin Griffin of Columbia University, Ray Fall of CU-Boulder and Monson.

Fall, a professor of the chemistry and biochemistry department at CU-Boulder, said about 500 million tons of isoprene are emitted into Earth’s atmosphere each year. The Southeast U.S. has large amounts of forest trees contributing to the isoprene emissions, said Fall, who also is a member with Monson at the CU-headquartered Cooperative Institute for Research in Environmental Sciences, or CIRES.

CIRES is a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration in Boulder.

The CU-Boulder team’s work, combined with research in the Biosphere II near Tucson, Ariz., primarily by Columbia University researchers, indicates it may be possible to genetically engineer environmentally friendly poplar trees by lessening their isoprene output, said Fall.

"As almost all commercial agriforest species emit high levels of isoprene, proliferation of agriforest plantations has significant potential to increase regional ozone pollution and enhance the lifetime of methane, an important determinant of global climate," the researchers wrote in Nature.

The Fall and Monson groups have been growing poplar trees in the chemistry and biochemistry department greenhouse in an attempt to isolate leaf cells and chloroplasts -- small bodies located inside plant cells that contain chlorophyll. They discovered that increases in CO2 in the laboratory caused the isoprene emissions from the leaf cells to decrease, a finding duplicated at the Biosphere II facility.

They currently are working on a number of further research projects related to the isoprene activity, including inhibiting an enzyme inside the plant cells that appears to control the amount of isoprene emitted by trees.


Contact: Todd Rosenstiel, (303) 492-5304
Todd.rosenstiel@colorado.edu
Ray Fall, (303) 492-7914
R.Fall@colorado.edu
Russell Monson, (303) 492-6319
monson@colorado.edu
Jim Scott, (303) 492-3114

Todd Rosenstiel | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>