Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two global pollutants work to offset each other, according to Colorado study

07.01.2003


University of Colorado at Boulder researchers have found, ironically, that two pollutants - carbon dioxide and hydrocarbons emitted from agricultural forest trees - offset each other somewhat in mitigating air quality problems.



Carbon dioxide, believed by scientists to be a major factor in greenhouse warming, has been shown to reduce "agriforest" emissions of hydrocarbons that contribute to ground-based ozone pollution, according to CU-Boulder doctoral candidate Todd Rosenstiel of the environmental, population and organismic, or EPO, biology department.

Commercial agriforests made up of trees including poplars, Eucalyptus and Acacia emit high levels of isoprene, a highly reactive chemical species believed to contribute heavily to ground-based ozone, said Rosenstiel, co-chief author of the study.


While this may seem like a good thing environmentally to some people, Rosenstiel is more cautious. "The effects of CO2 are unpredictable. The bigger picture is the rapidly growing amount of these agriforests worldwide emitting hydrocarbons like isoprene in much larger volumes.

"We still do not know enough about the basic chemistry and biochemistry of isoprene to predict what may happen in the future," Rosenstiel said. "One thing we have shown is that ’tweaking’ environmental conditions where such trees grow through changes in water consumption, temperature and soil conditions may have significant effects on isoprene emissions."

As people replace natural forests with agriforests, the species do produce significant amounts of hydrocarbons like isoprene," said Russell Monson, chair of CU-Boulder’s EPO biology department. "The news here is that we have found a situation where elevated CO2 concentrations work in a positive way to reduce pollution from isoprene, that combines with sunlight and vehicle and industrial pollution to form smog and related lung problems in people."

A paper on the subject was published electronically today by Nature magazine. The primary authors are Rosenstiel and Mark Potosnak of Columbia University, now with the National Center for Atmospheric Research in Boulder. Other authors include Kevin Griffin of Columbia University, Ray Fall of CU-Boulder and Monson.

Fall, a professor of the chemistry and biochemistry department at CU-Boulder, said about 500 million tons of isoprene are emitted into Earth’s atmosphere each year. The Southeast U.S. has large amounts of forest trees contributing to the isoprene emissions, said Fall, who also is a member with Monson at the CU-headquartered Cooperative Institute for Research in Environmental Sciences, or CIRES.

CIRES is a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration in Boulder.

The CU-Boulder team’s work, combined with research in the Biosphere II near Tucson, Ariz., primarily by Columbia University researchers, indicates it may be possible to genetically engineer environmentally friendly poplar trees by lessening their isoprene output, said Fall.

"As almost all commercial agriforest species emit high levels of isoprene, proliferation of agriforest plantations has significant potential to increase regional ozone pollution and enhance the lifetime of methane, an important determinant of global climate," the researchers wrote in Nature.

The Fall and Monson groups have been growing poplar trees in the chemistry and biochemistry department greenhouse in an attempt to isolate leaf cells and chloroplasts -- small bodies located inside plant cells that contain chlorophyll. They discovered that increases in CO2 in the laboratory caused the isoprene emissions from the leaf cells to decrease, a finding duplicated at the Biosphere II facility.

They currently are working on a number of further research projects related to the isoprene activity, including inhibiting an enzyme inside the plant cells that appears to control the amount of isoprene emitted by trees.


Contact: Todd Rosenstiel, (303) 492-5304
Todd.rosenstiel@colorado.edu
Ray Fall, (303) 492-7914
R.Fall@colorado.edu
Russell Monson, (303) 492-6319
monson@colorado.edu
Jim Scott, (303) 492-3114

Todd Rosenstiel | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>