Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two global pollutants work to offset each other, according to Colorado study

07.01.2003


University of Colorado at Boulder researchers have found, ironically, that two pollutants - carbon dioxide and hydrocarbons emitted from agricultural forest trees - offset each other somewhat in mitigating air quality problems.



Carbon dioxide, believed by scientists to be a major factor in greenhouse warming, has been shown to reduce "agriforest" emissions of hydrocarbons that contribute to ground-based ozone pollution, according to CU-Boulder doctoral candidate Todd Rosenstiel of the environmental, population and organismic, or EPO, biology department.

Commercial agriforests made up of trees including poplars, Eucalyptus and Acacia emit high levels of isoprene, a highly reactive chemical species believed to contribute heavily to ground-based ozone, said Rosenstiel, co-chief author of the study.


While this may seem like a good thing environmentally to some people, Rosenstiel is more cautious. "The effects of CO2 are unpredictable. The bigger picture is the rapidly growing amount of these agriforests worldwide emitting hydrocarbons like isoprene in much larger volumes.

"We still do not know enough about the basic chemistry and biochemistry of isoprene to predict what may happen in the future," Rosenstiel said. "One thing we have shown is that ’tweaking’ environmental conditions where such trees grow through changes in water consumption, temperature and soil conditions may have significant effects on isoprene emissions."

As people replace natural forests with agriforests, the species do produce significant amounts of hydrocarbons like isoprene," said Russell Monson, chair of CU-Boulder’s EPO biology department. "The news here is that we have found a situation where elevated CO2 concentrations work in a positive way to reduce pollution from isoprene, that combines with sunlight and vehicle and industrial pollution to form smog and related lung problems in people."

A paper on the subject was published electronically today by Nature magazine. The primary authors are Rosenstiel and Mark Potosnak of Columbia University, now with the National Center for Atmospheric Research in Boulder. Other authors include Kevin Griffin of Columbia University, Ray Fall of CU-Boulder and Monson.

Fall, a professor of the chemistry and biochemistry department at CU-Boulder, said about 500 million tons of isoprene are emitted into Earth’s atmosphere each year. The Southeast U.S. has large amounts of forest trees contributing to the isoprene emissions, said Fall, who also is a member with Monson at the CU-headquartered Cooperative Institute for Research in Environmental Sciences, or CIRES.

CIRES is a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration in Boulder.

The CU-Boulder team’s work, combined with research in the Biosphere II near Tucson, Ariz., primarily by Columbia University researchers, indicates it may be possible to genetically engineer environmentally friendly poplar trees by lessening their isoprene output, said Fall.

"As almost all commercial agriforest species emit high levels of isoprene, proliferation of agriforest plantations has significant potential to increase regional ozone pollution and enhance the lifetime of methane, an important determinant of global climate," the researchers wrote in Nature.

The Fall and Monson groups have been growing poplar trees in the chemistry and biochemistry department greenhouse in an attempt to isolate leaf cells and chloroplasts -- small bodies located inside plant cells that contain chlorophyll. They discovered that increases in CO2 in the laboratory caused the isoprene emissions from the leaf cells to decrease, a finding duplicated at the Biosphere II facility.

They currently are working on a number of further research projects related to the isoprene activity, including inhibiting an enzyme inside the plant cells that appears to control the amount of isoprene emitted by trees.


Contact: Todd Rosenstiel, (303) 492-5304
Todd.rosenstiel@colorado.edu
Ray Fall, (303) 492-7914
R.Fall@colorado.edu
Russell Monson, (303) 492-6319
monson@colorado.edu
Jim Scott, (303) 492-3114

Todd Rosenstiel | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>