Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two global pollutants work to offset each other, according to Colorado study

07.01.2003


University of Colorado at Boulder researchers have found, ironically, that two pollutants - carbon dioxide and hydrocarbons emitted from agricultural forest trees - offset each other somewhat in mitigating air quality problems.



Carbon dioxide, believed by scientists to be a major factor in greenhouse warming, has been shown to reduce "agriforest" emissions of hydrocarbons that contribute to ground-based ozone pollution, according to CU-Boulder doctoral candidate Todd Rosenstiel of the environmental, population and organismic, or EPO, biology department.

Commercial agriforests made up of trees including poplars, Eucalyptus and Acacia emit high levels of isoprene, a highly reactive chemical species believed to contribute heavily to ground-based ozone, said Rosenstiel, co-chief author of the study.


While this may seem like a good thing environmentally to some people, Rosenstiel is more cautious. "The effects of CO2 are unpredictable. The bigger picture is the rapidly growing amount of these agriforests worldwide emitting hydrocarbons like isoprene in much larger volumes.

"We still do not know enough about the basic chemistry and biochemistry of isoprene to predict what may happen in the future," Rosenstiel said. "One thing we have shown is that ’tweaking’ environmental conditions where such trees grow through changes in water consumption, temperature and soil conditions may have significant effects on isoprene emissions."

As people replace natural forests with agriforests, the species do produce significant amounts of hydrocarbons like isoprene," said Russell Monson, chair of CU-Boulder’s EPO biology department. "The news here is that we have found a situation where elevated CO2 concentrations work in a positive way to reduce pollution from isoprene, that combines with sunlight and vehicle and industrial pollution to form smog and related lung problems in people."

A paper on the subject was published electronically today by Nature magazine. The primary authors are Rosenstiel and Mark Potosnak of Columbia University, now with the National Center for Atmospheric Research in Boulder. Other authors include Kevin Griffin of Columbia University, Ray Fall of CU-Boulder and Monson.

Fall, a professor of the chemistry and biochemistry department at CU-Boulder, said about 500 million tons of isoprene are emitted into Earth’s atmosphere each year. The Southeast U.S. has large amounts of forest trees contributing to the isoprene emissions, said Fall, who also is a member with Monson at the CU-headquartered Cooperative Institute for Research in Environmental Sciences, or CIRES.

CIRES is a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration in Boulder.

The CU-Boulder team’s work, combined with research in the Biosphere II near Tucson, Ariz., primarily by Columbia University researchers, indicates it may be possible to genetically engineer environmentally friendly poplar trees by lessening their isoprene output, said Fall.

"As almost all commercial agriforest species emit high levels of isoprene, proliferation of agriforest plantations has significant potential to increase regional ozone pollution and enhance the lifetime of methane, an important determinant of global climate," the researchers wrote in Nature.

The Fall and Monson groups have been growing poplar trees in the chemistry and biochemistry department greenhouse in an attempt to isolate leaf cells and chloroplasts -- small bodies located inside plant cells that contain chlorophyll. They discovered that increases in CO2 in the laboratory caused the isoprene emissions from the leaf cells to decrease, a finding duplicated at the Biosphere II facility.

They currently are working on a number of further research projects related to the isoprene activity, including inhibiting an enzyme inside the plant cells that appears to control the amount of isoprene emitted by trees.


Contact: Todd Rosenstiel, (303) 492-5304
Todd.rosenstiel@colorado.edu
Ray Fall, (303) 492-7914
R.Fall@colorado.edu
Russell Monson, (303) 492-6319
monson@colorado.edu
Jim Scott, (303) 492-3114

Todd Rosenstiel | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht The disappearance of common species
01.02.2018 | Technical University of Munich (TUM)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>