Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rain will take greater toll on reindeer, climate change model shows

19.12.2002


Jolly Old St. Nick depends on his team of reindeer to complete his Christmas rounds on time. But new research indicates that, because of the world’s changing climate, Santa might want to start thinking of new ways to power his sleigh.


Reindeer graze on the island of Spitsbergen, one area being affected by more rain-on-snow events that can cut the animals off from their food supply. (Photo credit: Jaakko Putkonen)



Scientists have long known that rain falling on snow in the far northern latitudes during winter months can play havoc with herds of hoofed animals – primarily reindeer, caribou and musk ox – that feed on lichens and mosses growing on the soil surface. In one recent instance on the far-north island of Spitsbergen, soil temperatures that normally stay well below freezing in winter months rose to near freezing and remained there for 10 days or so because rainwater seeped through the snow and water pooled at the soil surface. Finally the water froze, so soil temperatures dropped again, but the ice coating kept the animals from their food supply.

"You have an ice layer at the surface several centimeters thick that even a person couldn’t get through without tools," said Jaakko Putkonen, a research assistant professor of earth and space sciences at the University of Washington.


Such an ice layer lasts until summer, when the snow and ice eventually melt. And it is not uncommon for several rain-on-snow events to happen in the same winter.

"I have seen soil temperatures remain at the freezing point for as long as two months because of the slowly freezing water below the thick snowpack," Putkonen said. "Even when ice layers are not impenetrable, the warmer soil surface temperatures promote the growth of fungi and toxic molds among the lichens, so the animals avoid those areas."

In addition, the top of the snow can be covered with a layer of ice that the animals can’t penetrate, and that can damage their hooves.

"During those periods the herders have to start bringing out hay because the reindeer just can’t get food," he said.

It appears that climate change will make things substantially worse.

Putkonen developed a model of snow and soil heat generation to gauge the effects of climate change in areas such as northern Alaska and Canada, Greenland, northern Scandinavia and Russia, and Spitsbergen, a Norwegian island midway between Norway and the North Pole.

The current scientific understanding of where and when rain-on-snow events happen is based on observations over a number of years. A computer model filled in missing data between areas where observations were made. To analyze the effects of human-caused climate change, Putkonen and his UW colleague Gerard Roe studied the results of the global climate model for the decade of 1980 through 1989 and found that it correlated quite closely with actual observations during that period.

"If anything, the model understated the results," Putkonen said.

Looking ahead to the decade of 2080-89, the model shows a 40 percent increase in the land area affected by rain-on-snow events. Typically those events happen closer to coastal areas, but the model predicts they will move much farther inland. That will mean major impacts not only on reindeer herds but also on the people who depend on them for their livelihood.

"The bottom line is that the rain will penetrate farther into the interiors of the continents, where most of the reindeer are," he said. "This is a consequence of climate change that specifically affects native peoples. They have depended on reindeer and caribou for thousands of years, but they don’t have the means or the ability to deal with these effects."

The research by Putkonen and Roe, a postdoctoral researcher in the UW Quaternary Research Center, will be published in an upcoming issue of Geophysical Research Letters, a publication of the American Geophysical Union.

Putkonen hopes this work will lead to more in-depth study of how reindeer and other large ungulates, or hoofed animals, living in northern climes will be affected by global climate change. For instance, it is unclear how much the loss of food because of rain-on-snow events affects the animals’ mortality, and there is little understanding of how much greater the affect will be as those events occur farther inland, where those animals live.


For more information, contact Putkonen at (206) 543-0689 or putkonen@u.washington.edu, or Roe at (206) 543-0570 or gerard@atmos.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>