Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rain will take greater toll on reindeer, climate change model shows

19.12.2002


Jolly Old St. Nick depends on his team of reindeer to complete his Christmas rounds on time. But new research indicates that, because of the world’s changing climate, Santa might want to start thinking of new ways to power his sleigh.


Reindeer graze on the island of Spitsbergen, one area being affected by more rain-on-snow events that can cut the animals off from their food supply. (Photo credit: Jaakko Putkonen)



Scientists have long known that rain falling on snow in the far northern latitudes during winter months can play havoc with herds of hoofed animals – primarily reindeer, caribou and musk ox – that feed on lichens and mosses growing on the soil surface. In one recent instance on the far-north island of Spitsbergen, soil temperatures that normally stay well below freezing in winter months rose to near freezing and remained there for 10 days or so because rainwater seeped through the snow and water pooled at the soil surface. Finally the water froze, so soil temperatures dropped again, but the ice coating kept the animals from their food supply.

"You have an ice layer at the surface several centimeters thick that even a person couldn’t get through without tools," said Jaakko Putkonen, a research assistant professor of earth and space sciences at the University of Washington.


Such an ice layer lasts until summer, when the snow and ice eventually melt. And it is not uncommon for several rain-on-snow events to happen in the same winter.

"I have seen soil temperatures remain at the freezing point for as long as two months because of the slowly freezing water below the thick snowpack," Putkonen said. "Even when ice layers are not impenetrable, the warmer soil surface temperatures promote the growth of fungi and toxic molds among the lichens, so the animals avoid those areas."

In addition, the top of the snow can be covered with a layer of ice that the animals can’t penetrate, and that can damage their hooves.

"During those periods the herders have to start bringing out hay because the reindeer just can’t get food," he said.

It appears that climate change will make things substantially worse.

Putkonen developed a model of snow and soil heat generation to gauge the effects of climate change in areas such as northern Alaska and Canada, Greenland, northern Scandinavia and Russia, and Spitsbergen, a Norwegian island midway between Norway and the North Pole.

The current scientific understanding of where and when rain-on-snow events happen is based on observations over a number of years. A computer model filled in missing data between areas where observations were made. To analyze the effects of human-caused climate change, Putkonen and his UW colleague Gerard Roe studied the results of the global climate model for the decade of 1980 through 1989 and found that it correlated quite closely with actual observations during that period.

"If anything, the model understated the results," Putkonen said.

Looking ahead to the decade of 2080-89, the model shows a 40 percent increase in the land area affected by rain-on-snow events. Typically those events happen closer to coastal areas, but the model predicts they will move much farther inland. That will mean major impacts not only on reindeer herds but also on the people who depend on them for their livelihood.

"The bottom line is that the rain will penetrate farther into the interiors of the continents, where most of the reindeer are," he said. "This is a consequence of climate change that specifically affects native peoples. They have depended on reindeer and caribou for thousands of years, but they don’t have the means or the ability to deal with these effects."

The research by Putkonen and Roe, a postdoctoral researcher in the UW Quaternary Research Center, will be published in an upcoming issue of Geophysical Research Letters, a publication of the American Geophysical Union.

Putkonen hopes this work will lead to more in-depth study of how reindeer and other large ungulates, or hoofed animals, living in northern climes will be affected by global climate change. For instance, it is unclear how much the loss of food because of rain-on-snow events affects the animals’ mortality, and there is little understanding of how much greater the affect will be as those events occur farther inland, where those animals live.


For more information, contact Putkonen at (206) 543-0689 or putkonen@u.washington.edu, or Roe at (206) 543-0570 or gerard@atmos.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>