Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rain will take greater toll on reindeer, climate change model shows

19.12.2002


Jolly Old St. Nick depends on his team of reindeer to complete his Christmas rounds on time. But new research indicates that, because of the world’s changing climate, Santa might want to start thinking of new ways to power his sleigh.


Reindeer graze on the island of Spitsbergen, one area being affected by more rain-on-snow events that can cut the animals off from their food supply. (Photo credit: Jaakko Putkonen)



Scientists have long known that rain falling on snow in the far northern latitudes during winter months can play havoc with herds of hoofed animals – primarily reindeer, caribou and musk ox – that feed on lichens and mosses growing on the soil surface. In one recent instance on the far-north island of Spitsbergen, soil temperatures that normally stay well below freezing in winter months rose to near freezing and remained there for 10 days or so because rainwater seeped through the snow and water pooled at the soil surface. Finally the water froze, so soil temperatures dropped again, but the ice coating kept the animals from their food supply.

"You have an ice layer at the surface several centimeters thick that even a person couldn’t get through without tools," said Jaakko Putkonen, a research assistant professor of earth and space sciences at the University of Washington.


Such an ice layer lasts until summer, when the snow and ice eventually melt. And it is not uncommon for several rain-on-snow events to happen in the same winter.

"I have seen soil temperatures remain at the freezing point for as long as two months because of the slowly freezing water below the thick snowpack," Putkonen said. "Even when ice layers are not impenetrable, the warmer soil surface temperatures promote the growth of fungi and toxic molds among the lichens, so the animals avoid those areas."

In addition, the top of the snow can be covered with a layer of ice that the animals can’t penetrate, and that can damage their hooves.

"During those periods the herders have to start bringing out hay because the reindeer just can’t get food," he said.

It appears that climate change will make things substantially worse.

Putkonen developed a model of snow and soil heat generation to gauge the effects of climate change in areas such as northern Alaska and Canada, Greenland, northern Scandinavia and Russia, and Spitsbergen, a Norwegian island midway between Norway and the North Pole.

The current scientific understanding of where and when rain-on-snow events happen is based on observations over a number of years. A computer model filled in missing data between areas where observations were made. To analyze the effects of human-caused climate change, Putkonen and his UW colleague Gerard Roe studied the results of the global climate model for the decade of 1980 through 1989 and found that it correlated quite closely with actual observations during that period.

"If anything, the model understated the results," Putkonen said.

Looking ahead to the decade of 2080-89, the model shows a 40 percent increase in the land area affected by rain-on-snow events. Typically those events happen closer to coastal areas, but the model predicts they will move much farther inland. That will mean major impacts not only on reindeer herds but also on the people who depend on them for their livelihood.

"The bottom line is that the rain will penetrate farther into the interiors of the continents, where most of the reindeer are," he said. "This is a consequence of climate change that specifically affects native peoples. They have depended on reindeer and caribou for thousands of years, but they don’t have the means or the ability to deal with these effects."

The research by Putkonen and Roe, a postdoctoral researcher in the UW Quaternary Research Center, will be published in an upcoming issue of Geophysical Research Letters, a publication of the American Geophysical Union.

Putkonen hopes this work will lead to more in-depth study of how reindeer and other large ungulates, or hoofed animals, living in northern climes will be affected by global climate change. For instance, it is unclear how much the loss of food because of rain-on-snow events affects the animals’ mortality, and there is little understanding of how much greater the affect will be as those events occur farther inland, where those animals live.


For more information, contact Putkonen at (206) 543-0689 or putkonen@u.washington.edu, or Roe at (206) 543-0570 or gerard@atmos.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>