Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State researchers study response of prairie ecosystem

13.12.2002


In face of changes in precipitation variability, climatic extremes



What does Kansas’ weather and life have in common? In the words of Forrest Gump, both are like a box of chocolates. "You’re never sure what you’re going to get." Rain or drought. Drought or rain.
Concerns about future climate changes resulting from human activities often focus on the effects of increases in average air temperatures or changes in average precipitation amounts. But climate models also predict increases in climate extremes such as more frequent large rainfall events or more severe droughts. This aspect of climate change can lead to an increase in climatic variability without accompanying changes in average temperatures or total precipitation amounts, according to a report by a team of researchers at Kansas State University.

The team, headed by Alan Knapp, a university distinguished professor of biology, and John Blair and Phil Fay, professors of biology, has been studying how grasslands respond to increases in the variability of rainfall patterns to better understand how rapidly and to what extent ecosystems might respond to a future with a more extreme climate. Their findings appear in the latest issue of Science.



A key feature of the four-year field study is that the team was able to construct 12 rainfall "shelters" on the Konza Prairie -- essentially greenhouses with clear plastic roofs but without sidewalls -- that allowed the researchers to collect and store rainfall as it occurred and use it in turn to manipulate rainfall patterns in large grassland plots.

The research team was able to alter the rainfall variability by using the collected rainfall to increase the size of individual rainfall events and lengthen the periods of time between rainfall events by 50 percent, thus effectively increasing the severity of dry periods between storms without altering the total amount of precipitation received during the growing season in their experimental plots.

"All plots get the same amount of rain, but there are different durations in the dry periods between events and the size of the storms is different," Knapp said of the. "We’re changing just the distribution of rain and the intensity of the rain, but we’re not changing the amount that occurs on the prairie."

After four years, researchers discovered "a host of changes" in the tallgrass prairie as a result of just altering the patterns of rainfall and not the amount of rainfall. When intact, native grassland plots exposed to more variable rainfall patterns were compared to plots that received natural rainfall patterns, the researchers found that the physiological vigor of the grasses decreased as did the overall productivity or growth of all plants combined. More variable rainfall patterns led to lower amounts of water in the soil in the upper 30 centimeters of soil. Since this is the soil depth where most plant roots occur and where soil microbes are most abundant, grasses were more water stressed and the activity of below ground organisms was reduced. Overall, more extreme rainfall patterns reduced the rate of carbon cycling in this grassland by lowering the uptake of carbon dioxide by the plants above ground and slowing carbon dioxide release by roots and microbes below ground.

"We found a significant reduction in the amount of grass growth and productivity, just by changing the pattern of rainfall but not by changing the total amount," Knapp said. "We saw significant reductions in below ground activity of the roots and microbes; we found significantly more stress in the grasses -- they experience longer dry periods between storms.; they can’t use the big rainfall events as effectively as they can the more frequent smaller ones and so we see greater water stress in the dominant grasses."

The group’s study as part of the Long-Term Ecological program at Konza Prairie, is the first to focus on and manipulate climate variability in an intact ecosystem without altering the climate average. Because all of the responses measured are similar to those that would occur under drought conditions, the results suggest that increased rainfall variability when combined with projected higher temperatures and decreased rainfall amounts may lead to even greater impacts on ecosystems than previously anticipated.

"This is a phenomenon of global importance, not just Kansas," Knapp said. "An increase in precipitation extremes is likely to occur everywhere. The kinds of climate changes that are likely to occur here and elsewhere will have measurable effects upon the resources that we depend upon. Those resources can be grassland resources or they can be cropland resources but it’s very likely that this change in climate, this increase in extreme storm events, this increase in rainfall variability will have measurable effects in a fairly short period of time."

Alan Knapp | EurekAlert!
Further information:
http://www.ksu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>