Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State researchers study response of prairie ecosystem

13.12.2002


In face of changes in precipitation variability, climatic extremes



What does Kansas’ weather and life have in common? In the words of Forrest Gump, both are like a box of chocolates. "You’re never sure what you’re going to get." Rain or drought. Drought or rain.
Concerns about future climate changes resulting from human activities often focus on the effects of increases in average air temperatures or changes in average precipitation amounts. But climate models also predict increases in climate extremes such as more frequent large rainfall events or more severe droughts. This aspect of climate change can lead to an increase in climatic variability without accompanying changes in average temperatures or total precipitation amounts, according to a report by a team of researchers at Kansas State University.

The team, headed by Alan Knapp, a university distinguished professor of biology, and John Blair and Phil Fay, professors of biology, has been studying how grasslands respond to increases in the variability of rainfall patterns to better understand how rapidly and to what extent ecosystems might respond to a future with a more extreme climate. Their findings appear in the latest issue of Science.



A key feature of the four-year field study is that the team was able to construct 12 rainfall "shelters" on the Konza Prairie -- essentially greenhouses with clear plastic roofs but without sidewalls -- that allowed the researchers to collect and store rainfall as it occurred and use it in turn to manipulate rainfall patterns in large grassland plots.

The research team was able to alter the rainfall variability by using the collected rainfall to increase the size of individual rainfall events and lengthen the periods of time between rainfall events by 50 percent, thus effectively increasing the severity of dry periods between storms without altering the total amount of precipitation received during the growing season in their experimental plots.

"All plots get the same amount of rain, but there are different durations in the dry periods between events and the size of the storms is different," Knapp said of the. "We’re changing just the distribution of rain and the intensity of the rain, but we’re not changing the amount that occurs on the prairie."

After four years, researchers discovered "a host of changes" in the tallgrass prairie as a result of just altering the patterns of rainfall and not the amount of rainfall. When intact, native grassland plots exposed to more variable rainfall patterns were compared to plots that received natural rainfall patterns, the researchers found that the physiological vigor of the grasses decreased as did the overall productivity or growth of all plants combined. More variable rainfall patterns led to lower amounts of water in the soil in the upper 30 centimeters of soil. Since this is the soil depth where most plant roots occur and where soil microbes are most abundant, grasses were more water stressed and the activity of below ground organisms was reduced. Overall, more extreme rainfall patterns reduced the rate of carbon cycling in this grassland by lowering the uptake of carbon dioxide by the plants above ground and slowing carbon dioxide release by roots and microbes below ground.

"We found a significant reduction in the amount of grass growth and productivity, just by changing the pattern of rainfall but not by changing the total amount," Knapp said. "We saw significant reductions in below ground activity of the roots and microbes; we found significantly more stress in the grasses -- they experience longer dry periods between storms.; they can’t use the big rainfall events as effectively as they can the more frequent smaller ones and so we see greater water stress in the dominant grasses."

The group’s study as part of the Long-Term Ecological program at Konza Prairie, is the first to focus on and manipulate climate variability in an intact ecosystem without altering the climate average. Because all of the responses measured are similar to those that would occur under drought conditions, the results suggest that increased rainfall variability when combined with projected higher temperatures and decreased rainfall amounts may lead to even greater impacts on ecosystems than previously anticipated.

"This is a phenomenon of global importance, not just Kansas," Knapp said. "An increase in precipitation extremes is likely to occur everywhere. The kinds of climate changes that are likely to occur here and elsewhere will have measurable effects upon the resources that we depend upon. Those resources can be grassland resources or they can be cropland resources but it’s very likely that this change in climate, this increase in extreme storm events, this increase in rainfall variability will have measurable effects in a fairly short period of time."

Alan Knapp | EurekAlert!
Further information:
http://www.ksu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>