Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team works toward energy-efficient Chinese homes

10.12.2002


Inspired by a booming economy and new spending power, the people of China want the advantages that their Western counterparts have: more living space, more comfort and more amenities. Studies by MIT researchers working with colleagues from Chinese universities and development companies suggest that those dreams can be fulfilled without necessarily adopting the energy-intensive practices of the West.



Because of China’s rapid economic growth, energy consumption is also rising sharply. By 2020, energy consumed for residential and commercial bulidings could rise to fully a third of the energy use by the nation of 1.3 billion people. Sustainable, energy-efficient building design has thus become very important. Researchers in MIT’s Building Technology Program and their Chinese collaborators have shown that applying some of China’s traditional approaches and other simple techniques to modern building designs can yield substantial benefits.

For example, researchers demonstrated that a group of energy-efficient low-rise buildings could provide the same living conditions as energy-consuming high-rise structures. The low-rise buildings were designed and oriented to catch the sun’s heat in winter and the prevailing breezes in summer. They also provide occupants a closer connection with outside communal green spaces.


An analysis of air conditioning needs in China showed that Beijing residents could be comfortable most of the time if they simply opened their windows at night and closed them during the day. When outdoor temperatures rise, cooled concrete floors would keep indoor temperatures down.

In working with the Chinese, the MIT researchers have made a troubling observation: developers are abandoning traditional Chinese practices and relying in ebergy-intensive Western methods instead. In the past, Chinese people typically lived in low bulidings with communal green spaces. Designs made effective use of natural ventilation and solar heating. In contrast, the buildings being put up today are generally Western-style high rises that isolate residents from one another and from outdoor spaces, and that depend on energy-consuming methods of heating and cooling.

Although Chinese leaders recognize the need for energy efficiency, various nontechnical issues impede progress. Energy-efficient equipment is expensive; many construction workers are new to the trade and lack the skills to do high-quality work; China’s building codes are not enforced through inspection of finished projects; and most consumers still get free heating and thus have little incentive to save energy.

The MIT and China researchers are also continuing to work with developers on energy-efficient designs and formulating simple computer-based tools that Chinese builders can use to compare the energy efficiency of design options.

For four years, the researchers have been preparing conceptual designs and performing parallel technology studies for large-scale residential demonstration projects in Beijing, Shanghai and Shenzhen (near Hong Kong). The cooperative effort involves MIT, Tsinghua University in Beijing, Tongji University in Shanghai and local Chinese development companies.

In two ongoing projects, the teams are designing a low-rise, high-density development for a 10-hectare site outside Beijing and a group of low-rise residential buildings for a two-hectare site in Shenzhen.


The team includes Leon R. Glicksman, a professor of building technology and mechanical engineering and director of the Building Technology Program; Leslie K. Norford, an associate professor of building technology in the Department of Architecture; Andrew M. Scott, an associate professor of architecture; John Fernandez, an assistant professor of building technology; and Lara Greden, a Ph.D. candidate in architecture. Another colleague, Professor Qingyan Chen, recently left MIT for Purdue University.

The research is supported by the Kann-Rasmussen Foundation and the Alliance for Global Sustainability.

By Nancy W. Stauffer
MIT Laboratory for Energy and the Environment


Nancy Stauffer | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>