Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team works toward energy-efficient Chinese homes

10.12.2002


Inspired by a booming economy and new spending power, the people of China want the advantages that their Western counterparts have: more living space, more comfort and more amenities. Studies by MIT researchers working with colleagues from Chinese universities and development companies suggest that those dreams can be fulfilled without necessarily adopting the energy-intensive practices of the West.



Because of China’s rapid economic growth, energy consumption is also rising sharply. By 2020, energy consumed for residential and commercial bulidings could rise to fully a third of the energy use by the nation of 1.3 billion people. Sustainable, energy-efficient building design has thus become very important. Researchers in MIT’s Building Technology Program and their Chinese collaborators have shown that applying some of China’s traditional approaches and other simple techniques to modern building designs can yield substantial benefits.

For example, researchers demonstrated that a group of energy-efficient low-rise buildings could provide the same living conditions as energy-consuming high-rise structures. The low-rise buildings were designed and oriented to catch the sun’s heat in winter and the prevailing breezes in summer. They also provide occupants a closer connection with outside communal green spaces.


An analysis of air conditioning needs in China showed that Beijing residents could be comfortable most of the time if they simply opened their windows at night and closed them during the day. When outdoor temperatures rise, cooled concrete floors would keep indoor temperatures down.

In working with the Chinese, the MIT researchers have made a troubling observation: developers are abandoning traditional Chinese practices and relying in ebergy-intensive Western methods instead. In the past, Chinese people typically lived in low bulidings with communal green spaces. Designs made effective use of natural ventilation and solar heating. In contrast, the buildings being put up today are generally Western-style high rises that isolate residents from one another and from outdoor spaces, and that depend on energy-consuming methods of heating and cooling.

Although Chinese leaders recognize the need for energy efficiency, various nontechnical issues impede progress. Energy-efficient equipment is expensive; many construction workers are new to the trade and lack the skills to do high-quality work; China’s building codes are not enforced through inspection of finished projects; and most consumers still get free heating and thus have little incentive to save energy.

The MIT and China researchers are also continuing to work with developers on energy-efficient designs and formulating simple computer-based tools that Chinese builders can use to compare the energy efficiency of design options.

For four years, the researchers have been preparing conceptual designs and performing parallel technology studies for large-scale residential demonstration projects in Beijing, Shanghai and Shenzhen (near Hong Kong). The cooperative effort involves MIT, Tsinghua University in Beijing, Tongji University in Shanghai and local Chinese development companies.

In two ongoing projects, the teams are designing a low-rise, high-density development for a 10-hectare site outside Beijing and a group of low-rise residential buildings for a two-hectare site in Shenzhen.


The team includes Leon R. Glicksman, a professor of building technology and mechanical engineering and director of the Building Technology Program; Leslie K. Norford, an associate professor of building technology in the Department of Architecture; Andrew M. Scott, an associate professor of architecture; John Fernandez, an assistant professor of building technology; and Lara Greden, a Ph.D. candidate in architecture. Another colleague, Professor Qingyan Chen, recently left MIT for Purdue University.

The research is supported by the Kann-Rasmussen Foundation and the Alliance for Global Sustainability.

By Nancy W. Stauffer
MIT Laboratory for Energy and the Environment


Nancy Stauffer | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>