Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team works toward energy-efficient Chinese homes

10.12.2002


Inspired by a booming economy and new spending power, the people of China want the advantages that their Western counterparts have: more living space, more comfort and more amenities. Studies by MIT researchers working with colleagues from Chinese universities and development companies suggest that those dreams can be fulfilled without necessarily adopting the energy-intensive practices of the West.



Because of China’s rapid economic growth, energy consumption is also rising sharply. By 2020, energy consumed for residential and commercial bulidings could rise to fully a third of the energy use by the nation of 1.3 billion people. Sustainable, energy-efficient building design has thus become very important. Researchers in MIT’s Building Technology Program and their Chinese collaborators have shown that applying some of China’s traditional approaches and other simple techniques to modern building designs can yield substantial benefits.

For example, researchers demonstrated that a group of energy-efficient low-rise buildings could provide the same living conditions as energy-consuming high-rise structures. The low-rise buildings were designed and oriented to catch the sun’s heat in winter and the prevailing breezes in summer. They also provide occupants a closer connection with outside communal green spaces.


An analysis of air conditioning needs in China showed that Beijing residents could be comfortable most of the time if they simply opened their windows at night and closed them during the day. When outdoor temperatures rise, cooled concrete floors would keep indoor temperatures down.

In working with the Chinese, the MIT researchers have made a troubling observation: developers are abandoning traditional Chinese practices and relying in ebergy-intensive Western methods instead. In the past, Chinese people typically lived in low bulidings with communal green spaces. Designs made effective use of natural ventilation and solar heating. In contrast, the buildings being put up today are generally Western-style high rises that isolate residents from one another and from outdoor spaces, and that depend on energy-consuming methods of heating and cooling.

Although Chinese leaders recognize the need for energy efficiency, various nontechnical issues impede progress. Energy-efficient equipment is expensive; many construction workers are new to the trade and lack the skills to do high-quality work; China’s building codes are not enforced through inspection of finished projects; and most consumers still get free heating and thus have little incentive to save energy.

The MIT and China researchers are also continuing to work with developers on energy-efficient designs and formulating simple computer-based tools that Chinese builders can use to compare the energy efficiency of design options.

For four years, the researchers have been preparing conceptual designs and performing parallel technology studies for large-scale residential demonstration projects in Beijing, Shanghai and Shenzhen (near Hong Kong). The cooperative effort involves MIT, Tsinghua University in Beijing, Tongji University in Shanghai and local Chinese development companies.

In two ongoing projects, the teams are designing a low-rise, high-density development for a 10-hectare site outside Beijing and a group of low-rise residential buildings for a two-hectare site in Shenzhen.


The team includes Leon R. Glicksman, a professor of building technology and mechanical engineering and director of the Building Technology Program; Leslie K. Norford, an associate professor of building technology in the Department of Architecture; Andrew M. Scott, an associate professor of architecture; John Fernandez, an assistant professor of building technology; and Lara Greden, a Ph.D. candidate in architecture. Another colleague, Professor Qingyan Chen, recently left MIT for Purdue University.

The research is supported by the Kann-Rasmussen Foundation and the Alliance for Global Sustainability.

By Nancy W. Stauffer
MIT Laboratory for Energy and the Environment


Nancy Stauffer | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>