Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reconstructing Salmon Populations

05.12.2002


Management of Pacific Salmon has been an issue for years. To determine whether management goals are working, knowledge of historical populations can prove quite useful. In a recent study published in Ecology, Deanne C. Drake, Robert J. Naiman, and James M. Helfield, all of the University of Washington, paired annual tree ring growth with catch data to determine what salmon stocks looked like 200 years ago.



Born in freshwater lakes and rivers, salmon swim to the ocean where they feed and mature. After a few years, they return to the river or lake of their birth to reproduce and die. As their bodies decay, they leave behind ocean nutrients in the freshwater ecosystems.

"There is a great need to understand how many salmon returned to rivers historically," said Naiman. "Once we knew nutrients from salmon carcasses affected tree growth in certain species, it seemed possible to use tree rings to estimate how many salmon returned to a river in any one year. This was a ’trial’ project to see if the idea would work."


Previous studies determined the 300-year history of sockeye salmon in the ocean and lakes around Alaska by analyzing nitrogen isotopes in lake sediment records. This method is impossible to use for river habitats, where sediment is constantly washed downstream and out into the ocean.

The researchers examined both cool, dry boreal forests and warm, moist Pacific Northwest rainforests. Drake and Naiman could not find evidence in the tree rings of a relationship between the pacific climate pattern and salmon populations or determine historical salmon populations in the boreal forests. Yet in the rainforests, where they originally did not expect to find a strong correlation, the scientists noticed a pattern in the tree rings which corresponded with the records of salmon abundance along the river’s edge.

Using this information, the scientists set to reconstruct salmon numbers as far back as 1820. They verified their information by comparing records of commercial salmon catch numbers with the tree core samples, and then filled in the gaps for the missing human records of salmon populations.
"These reconstructions follow the general ups and downs of historical catch records, but we need to better understand the relationship between tree-ring growth and salmon before we can say this method is accurate." said Drake.

Another method which Naiman and others are currently looking into involves the measurement of nitrogen in tree rings. As the salmon decay, a particular type of nitrogen can be detected in soils and leaves near streams. These nitrogen isotopes have been measured in previous studies and found to relate to the massive deaths following spawning salmon.

According to Naiman, "Measuring nitrogen isotopes in tree rings is potentially more accurate, although much harder to determine."


Ecology is a peer-reviewed journal published twelve times a year by the Ecological Society of America (ESA). Copies of the above article are available free of charge to the press through the Society’s Public Affairs Office. Members of the press may also obtain copies of ESA’s entire family of publications, which includes Ecology, Ecological Applications, and Ecological Monographs. Others interested in copies of articles should contact the Reprint Department at the address in the masthead.

Founded in 1915, the Ecological Society of America (ESA) is a scientific, non-profit, organization with over 7800 members. Through ESA reports, journals, membership research, and expert testimony to Congress, ESA seeks to promote the responsible application of ecological data and principles to the solution of environmental problems. For more information about the Society and its activities, access ESA’s web site at: http://www.esa.org.

Annie Drinkard | esa
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>