Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reconstructing Salmon Populations

05.12.2002


Management of Pacific Salmon has been an issue for years. To determine whether management goals are working, knowledge of historical populations can prove quite useful. In a recent study published in Ecology, Deanne C. Drake, Robert J. Naiman, and James M. Helfield, all of the University of Washington, paired annual tree ring growth with catch data to determine what salmon stocks looked like 200 years ago.



Born in freshwater lakes and rivers, salmon swim to the ocean where they feed and mature. After a few years, they return to the river or lake of their birth to reproduce and die. As their bodies decay, they leave behind ocean nutrients in the freshwater ecosystems.

"There is a great need to understand how many salmon returned to rivers historically," said Naiman. "Once we knew nutrients from salmon carcasses affected tree growth in certain species, it seemed possible to use tree rings to estimate how many salmon returned to a river in any one year. This was a ’trial’ project to see if the idea would work."


Previous studies determined the 300-year history of sockeye salmon in the ocean and lakes around Alaska by analyzing nitrogen isotopes in lake sediment records. This method is impossible to use for river habitats, where sediment is constantly washed downstream and out into the ocean.

The researchers examined both cool, dry boreal forests and warm, moist Pacific Northwest rainforests. Drake and Naiman could not find evidence in the tree rings of a relationship between the pacific climate pattern and salmon populations or determine historical salmon populations in the boreal forests. Yet in the rainforests, where they originally did not expect to find a strong correlation, the scientists noticed a pattern in the tree rings which corresponded with the records of salmon abundance along the river’s edge.

Using this information, the scientists set to reconstruct salmon numbers as far back as 1820. They verified their information by comparing records of commercial salmon catch numbers with the tree core samples, and then filled in the gaps for the missing human records of salmon populations.
"These reconstructions follow the general ups and downs of historical catch records, but we need to better understand the relationship between tree-ring growth and salmon before we can say this method is accurate." said Drake.

Another method which Naiman and others are currently looking into involves the measurement of nitrogen in tree rings. As the salmon decay, a particular type of nitrogen can be detected in soils and leaves near streams. These nitrogen isotopes have been measured in previous studies and found to relate to the massive deaths following spawning salmon.

According to Naiman, "Measuring nitrogen isotopes in tree rings is potentially more accurate, although much harder to determine."


Ecology is a peer-reviewed journal published twelve times a year by the Ecological Society of America (ESA). Copies of the above article are available free of charge to the press through the Society’s Public Affairs Office. Members of the press may also obtain copies of ESA’s entire family of publications, which includes Ecology, Ecological Applications, and Ecological Monographs. Others interested in copies of articles should contact the Reprint Department at the address in the masthead.

Founded in 1915, the Ecological Society of America (ESA) is a scientific, non-profit, organization with over 7800 members. Through ESA reports, journals, membership research, and expert testimony to Congress, ESA seeks to promote the responsible application of ecological data and principles to the solution of environmental problems. For more information about the Society and its activities, access ESA’s web site at: http://www.esa.org.

Annie Drinkard | esa
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>