Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LID-Er Prevents Forest Fire

18.11.2002


The earlier the smoke in a forest will be detected, the easier it would be for firemen to stop the fire from spreading. The problem of forest fires have always been one of the most difficult and dangerous problems. Russian scientists from MULTITECH Ltd. have developed an equipment, which can help solving the problem.



Right now the equipment is not of much use, because autumn rains have already quenched forest and turf fires. However, if the scientists put their invention to industrial production by the next summer, it will really improve the situation. Laser beam can easily detect a fire and then, if needed, alarm the operator at the central control. A single LID-Er, as it was named, can observe a square up to 100 thousand hectares.

A strong laser beam periodically controls atmosphere conditions. Smoke is opaque for laser light, so the beam reflects back. A special telescopic system "catches" the signal, amplifies it and sends to computer. If after several minutes (on the second pass) the smoke is detected once more at the same point, computer will compare intensities of first and second signals, taking more measures if needed and carrying out the process dynamics. If the smoke density gradually increases, the computer will send an alarm signal to the operator’’s desk. Then it’’s up to the operator to decides, whether to send a firemen brigade to the dangerous place.


The question is that of eye safety of such system, because the beam energy is very high. High-energy lasers are used even for cutting thick steel sheets, so it will be an accident if such beam somehow strikes an eye. To prevent such cases, the beam wavelength was selected from "eye safe" range, so that it doesn’’t hurt sensitive organs.

Will the LID-Er see campfire smoke? "It should", assures one of the developers, Andrey Alekseev. " The question is the distance and smoke density. We’’ve been working on these questions using our experimental model".

Olga Maksimenko | alfa
Further information:
http://www.informnauka.ru/eng/2002/2002-11-15-02_254_e.htm

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Cloud Formation: How Feldspar Acts as Ice Nucleus

09.12.2016 | Life Sciences

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>