Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers close in on natural solution to PCB contamination

05.11.2002


An environmentally friendly solution to one of the world’s most notorious chemical contamination problems may be a step closer to reality, reports a research team from Purdue University and the University of British Columbia.


A micrograph image of Rhodococcus sp. RHA1, which are good PCB-degraders. Researchers Jeffrey Bolin and Lindsay Eltis hope bacteria, such as these, can be bred to digest PCBs effectively enough to cleanse the environment of these hazardous chemicals. (Photo/UBC Bioimaging Facility)



The team has identified one of the key stumbling blocks that prevent microorganisms from decomposing PCBs (polychlorinated biphenyls), a persistent and potentially hazardous industrial chemical that has become nearly ubiquitous in the environment. While capitalizing on the discovery will take time, it could eventually show researchers how to teach microorganisms to break down PCBs into ecologically safe molecules, a process known as bioremediation.

"We have isolated one of the major hurdles to cleaning up PCBs naturally," said Jeffrey T. Bolin, professor of biological sciences and a member of Purdue’s Markey Center for Structural Biology and Cancer Center. "This gives us a clear picture of one route to degrading PCBs in the environment."


The research appears on the press Web site of Nature Structural Biology.

PCBs were manufactured and used widely in industry for decades, but the 1960s and 1970s brought increased awareness of their toxicity to animals and mass poisonings linked to PCB-contaminated food. PCBs are no longer manufactured in the United States, but their persistence makes them a worldwide problem because many suggested cleanup methods, such as incineration, are ineffective, sometimes even generating other toxic compounds such as dioxins.

"The globe’s entire surface is now contaminated with PCBs," Bolin said. "They are in the soil you walk on and in Arctic ice. They accumulate in organisms as you go up the food chain, especially in aquatic environments, which means that creatures that eat fish – like humans – are particularly likely to absorb large quantities."

Many harmful chemicals in the environment are broken down into benign substances naturally by microorganisms, but PCBs have persisted for decades because decomposers, such as bacteria and fungi, do not find them tasty – at least, not tasty enough.

"PCB molecules actually look very similar to many organic molecules that certain bacteria eat," Bolin said. "But there are enough little differences that bacteria can’t quite digest them. It’s frustrating, because if bacteria could fully digest PCBs, it might solve a worldwide pollution problem. We asked ourselves: What could we do to improve bacterial digestion of PCBs?"

To answer the question, the group has adopted a twofold strategy: first, identify what aspect of PCB breakdown the bacteria are having trouble accomplishing, then breed bacteria to improve their talent at accomplishing it. Bolin said the group’s findings are a breakthrough for the first aspect.

"The process of digestion requires a long chain of chemical steps, and if the bacteria can’t accomplish one of those steps, the chain is broken and digestion can’t occur," Bolin said. "What we have done is isolate one of the steps that causes problems for the bacteria, a clog in the biochemical pipeline if you will."

Now that the group has perspective on this first aspect of the problem, they can focus on improving bacteria for battle against the PCB enemy. Bolin and his research partner, Lindsay Eltis, predict that microorganisms can learn to consume PCBs if properly bred.

"A species will fit itself to a new environment, given many generations to adapt," said Eltis, associate professor of microbiology and biochemistry at the University of British Columbia. "In the case of bacteria, you can get new generations once every few minutes under proper laboratory conditions – just like breeding dogs, only much more rapidly. We hope to use certain species of bacteria with a slight taste for PCBs and improve this trait through breeding until it’s strong enough to make them consume PCBs as a food source."

If the group succeeds, it could mean that PCBs’ days are numbered in the environment. But Eltis emphasizes that there remain difficulties ahead.

"We still have a great deal to do, and it will not be a simple matter to fit a species of bacteria to the task," he said. "But the potential environmental rewards are inspiring. If we succeed, we could get the planet back to where it was before PCBs were ever manufactured."

This research has been funded by the National Institutes of Health and Canada’s National Science and Research Council.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: Jeffrey Bolin, (765) 494-4922, jtb@purdue.edu

Lindsay Eltis, (604) 822-0042, leltis@interchange.ubc.ca

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://press.nature.com/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>