Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers close in on natural solution to PCB contamination

05.11.2002


An environmentally friendly solution to one of the world’s most notorious chemical contamination problems may be a step closer to reality, reports a research team from Purdue University and the University of British Columbia.


A micrograph image of Rhodococcus sp. RHA1, which are good PCB-degraders. Researchers Jeffrey Bolin and Lindsay Eltis hope bacteria, such as these, can be bred to digest PCBs effectively enough to cleanse the environment of these hazardous chemicals. (Photo/UBC Bioimaging Facility)



The team has identified one of the key stumbling blocks that prevent microorganisms from decomposing PCBs (polychlorinated biphenyls), a persistent and potentially hazardous industrial chemical that has become nearly ubiquitous in the environment. While capitalizing on the discovery will take time, it could eventually show researchers how to teach microorganisms to break down PCBs into ecologically safe molecules, a process known as bioremediation.

"We have isolated one of the major hurdles to cleaning up PCBs naturally," said Jeffrey T. Bolin, professor of biological sciences and a member of Purdue’s Markey Center for Structural Biology and Cancer Center. "This gives us a clear picture of one route to degrading PCBs in the environment."


The research appears on the press Web site of Nature Structural Biology.

PCBs were manufactured and used widely in industry for decades, but the 1960s and 1970s brought increased awareness of their toxicity to animals and mass poisonings linked to PCB-contaminated food. PCBs are no longer manufactured in the United States, but their persistence makes them a worldwide problem because many suggested cleanup methods, such as incineration, are ineffective, sometimes even generating other toxic compounds such as dioxins.

"The globe’s entire surface is now contaminated with PCBs," Bolin said. "They are in the soil you walk on and in Arctic ice. They accumulate in organisms as you go up the food chain, especially in aquatic environments, which means that creatures that eat fish – like humans – are particularly likely to absorb large quantities."

Many harmful chemicals in the environment are broken down into benign substances naturally by microorganisms, but PCBs have persisted for decades because decomposers, such as bacteria and fungi, do not find them tasty – at least, not tasty enough.

"PCB molecules actually look very similar to many organic molecules that certain bacteria eat," Bolin said. "But there are enough little differences that bacteria can’t quite digest them. It’s frustrating, because if bacteria could fully digest PCBs, it might solve a worldwide pollution problem. We asked ourselves: What could we do to improve bacterial digestion of PCBs?"

To answer the question, the group has adopted a twofold strategy: first, identify what aspect of PCB breakdown the bacteria are having trouble accomplishing, then breed bacteria to improve their talent at accomplishing it. Bolin said the group’s findings are a breakthrough for the first aspect.

"The process of digestion requires a long chain of chemical steps, and if the bacteria can’t accomplish one of those steps, the chain is broken and digestion can’t occur," Bolin said. "What we have done is isolate one of the steps that causes problems for the bacteria, a clog in the biochemical pipeline if you will."

Now that the group has perspective on this first aspect of the problem, they can focus on improving bacteria for battle against the PCB enemy. Bolin and his research partner, Lindsay Eltis, predict that microorganisms can learn to consume PCBs if properly bred.

"A species will fit itself to a new environment, given many generations to adapt," said Eltis, associate professor of microbiology and biochemistry at the University of British Columbia. "In the case of bacteria, you can get new generations once every few minutes under proper laboratory conditions – just like breeding dogs, only much more rapidly. We hope to use certain species of bacteria with a slight taste for PCBs and improve this trait through breeding until it’s strong enough to make them consume PCBs as a food source."

If the group succeeds, it could mean that PCBs’ days are numbered in the environment. But Eltis emphasizes that there remain difficulties ahead.

"We still have a great deal to do, and it will not be a simple matter to fit a species of bacteria to the task," he said. "But the potential environmental rewards are inspiring. If we succeed, we could get the planet back to where it was before PCBs were ever manufactured."

This research has been funded by the National Institutes of Health and Canada’s National Science and Research Council.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: Jeffrey Bolin, (765) 494-4922, jtb@purdue.edu

Lindsay Eltis, (604) 822-0042, leltis@interchange.ubc.ca

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://press.nature.com/

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>