Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overfishing may diminish genetic diversity even when millions of fish remain

04.11.2002


Populations of marine fish may lose genetic diversity even if fishing stops while there are still several million individuals – a number previously assumed to be enough to preserve a diverse gene pool.



Losing the diversity of key genes can render a population less productive and unable to adapt when faced with challenges such as global warming, pollution or changes in predators or prey. Rare genetic variation of little importance today might be the key to adaptability in the future, according to Lorenz Hauser, University of Washington assistant professor with the School of Aquatic and Fishery Sciences and lead author of a report recently published as part of the Proceedings of the National Academy of Sciences.

It could be that genetic diversity in a population needs to be considered when determining sustainable harvests for marine fish – fish such as snappers, rockfish and cod that spend their entire lives in the ocean. For some animals studied by conservation biologists, such as pandas and elephants, as few as 500 individuals appear to be enough to maintain rare variances.


For reasons not yet understood, however, it appears that in marine fishes only a small proportion of individuals produce large numbers of offspring that survive. Therefore as a fish population declines the number of such capable breeders may reach levels that cannot sustain genetic diversity.

What Hauser and his co-authors found is that the number of capable breeders is several magnitudes smaller than they expected: In their work with a population of New Zealand snapper that was fished down to about 3 million, only one in 10,000 fish was a capable breeder. That means the genetic diversity for a population of a few million fish could be depending on as little as a few hundred fish.

If such low ratios are commonplace in marine species, many other kinds of marine fish stocks may be in danger of losing genetic variability, the paper says. Fish scales collected and archived at the New Zealand Ministry of Fisheries provided DNA from two isolated populations of New Zealand snappers for the research. The smaller population from Tasman Bay lost variations in six of seven gene markers as its numbers declined to 3 million while exploited between the 1950s and 1998. A larger population from Hauraki Gulf, composed of 37 million fish, showed no loss in variation between the 1950s and 1998. However, it had been fished since the late 1800s and by 1950 already had less genetic variation compared to the Tasman Bay population.

From a practical standpoint, fisheries managers are not going to be able to monitor genetic diversity for every stock, Hauser says. Instead, if scientists can learn which fish are the very successful breeders and why, then managers may be better able to predict the number of offspring produced and thus may be able to increase fishing when conditions are favorable for successful fish and decrease fishing when they aren’t.

Hauser was at the University of Hull, England, when the work was conducted in collaboration with Greg Adcock (now of the University of Melbourne), Julio Bernal Ramirez and Gary Carvalho, and their colleague Peter Smith of the National Institute of Water and Atmospheric Research, New Zealand. The study was funded by the Leverhulme Trust, England.


For more information:
Hauser, 206-685-3270, lhauser@u.washington.edu

"Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper," Proceedings of the National Academy of Sciences, http://www.pnas.org/cgi/content/abstract/99/18/11742


Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu/
http://www.pnas.org/cgi/content/abstract/99/18/11742

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>