Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find grass yield, carbon storage not affected by creepy-crawlies in the soil

18.10.2002


New results from experiments at a unique ecology facility show that plant communities are dramatically altered by changes to the type of animal species living among their roots, but that key ecosystem measurements such as overall agricultural yield or the amount of soil carbon stored are unaffected.



According to the results of a three year study into the processes of experimental grassland ecosystems published in the journal Science today, changes to the makeup of soil communities from small to large animal body sizes -ranging from bacteria and fungi to worms and beetles - have no significant effect on the overall yield of the plant life above, nor on the overall amount of carbon stored away in the soil.

The researchers from England, Wales, Scotland, Germany and Finland say that the results of their experiment send an important message about the ability of natural ecosystems to cope with human impacts, such as changes to the composition of soil communities, but caution that further long-term work is needed to confirm their findings.


“The study suggests that if you mess about with soil communities, say from the impacts of global change, you may alter the way the systems work but this has no major consequence in terms of the system’s outputs, for example the amount of grass produced,” says Dr Mark Bradford, lead author of the study based at the Natural Environment Research Council (NERC) Centre for Population Biology, Imperial College London.

“However, further studies may reveal that these changes have an impact over a longer time scale and our current investigations suggest that this could well be the case,” he adds.

The findings are based on work into the effects of global change on soil biodiversity done at the UK’s unique Ecotron research facility at the NERC Centre for Population Biology. The Ecotron consists of 16 sealed walk-in chambers with computer-controlled climatic conditions.

Each chamber housed a mini grassland ecosystem one metre square taken from Sourhope, a grazed upland grassland habitat in Scotland.

Over seven months researchers removed soil animals and then artificially reconstructed the grasslands with animals that differed in their body sizes - treatments contained small, medium or large soil fauna.

The experiment ran for nine months, during which seasonal conditions were set to mimic June/July temperatures in Scotland – akin to a continuous growing season.

The researchers had their expectations, based on previous, simpler experiments, turned on their heads when they came to examine the results.

They had predicted that the larger fauna communities would lead to changes in the composition of the plant community and a rise in the yield, or Net Primary Productivity, because of the previously reported positive effects of these fauna on soil fertility and plant growth. They also expected to see an increase in the amount of carbon stored in the system, or Net Ecosystem Productivity.

In fact they found neither; the different animal soil communities did not change overall vital ecosystems services such as the amount of carbon stored in the soil or the overall yield.

To explain their results, they suggest that both positive and negative effects of the fauna in the soil act to cancel each other out, causing no net ecosystem effects.

The Natural Environment Research Council provides core funding to the Centre for Population Biology as well as funding for this research under its Soil Biodiversity Programme.



Tom Miller | alfa

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>