Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU research looks into Europe’s carbon sinks

18.10.2002


Are European forests, soil and grass part of the solution for dealing with carbon dioxide (CO2) emissions? Today the European Commission presented the CarboEurope research initiative in Valencia (Spain). It is a cluster of 15 research projects supported by the European Commission with a budget of €25 million. The project brings together around 160 research institutions from over 20 countries. It looks at whether the biosphere, and above all forests, can reduce the concentration of carbon dioxide in the atmosphere, the principal cause of climate warming. The Earth’s biosphere can absorb more carbon than it releases. European forests could therefore be huge carbon sinks. CarboEurope’s preliminary results point to a CO2 absorption rate of up to 30% of EU annual industrial emissions.



According to European Research Commissioner Philippe Busquin: “Through the CarboEurope initiative, our best scientists across Europe are working together to be able to better quantify the capacity of forests to absorb and store carbon. This is particularly important if we want to be able to meet the stringent Kyoto Protocol targets for cutting CO2 levels. This issue is on the international agenda, in view of the Kyoto follow-up meeting in New Dehli . Over the next four years, the EU will devote €700 million to support research on global change and ecosystems. More research will help the EU promote its sustainable development agenda on the world stage.”

Once finalised, CarboEurope will be able to measure and check progress towards the Kyoto target, i.e. the planned CO2 reduction in the atmosphere. In order to achieve this aim, a large carbon monitoring network has been established across Europe at ground level and in the air. Measurements will be analysed and integrated through computer modelling. To date, CarboEurope has produced significant evidence that the European biosphere is absorbing the equivalent of 10-30% of annual industrial CO2 emissions. CarboEurope will also analyse how a changing climate might modify, and eventually reduce, the biosphere’s capacity for absorbing CO2.


Sustainable forest management can and should play a key role in protecting and enhancing carbon stocks and combating climate change. The project shows that semi-natural forests with high bio-diversity and a different age class structure are most able to meet these targets. In addition, it also found that old unspoiled forests still absorb carbon and that the protection of these forests should receive high priority in order to protect the large carbon stocks.

CarboEurope is the world’s first research project in which a coherent, comprehensive integration of terrestrial and atmospheric carbon sciences has been achieved on a continental scale. The US, Japan and China plan to launch similar initiatives.

Fabio Fabbi | European Commission
Further information:
http://www.bgc-jena.mpg.de/public/carboeur/

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>