Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU research looks into Europe’s carbon sinks

18.10.2002


Are European forests, soil and grass part of the solution for dealing with carbon dioxide (CO2) emissions? Today the European Commission presented the CarboEurope research initiative in Valencia (Spain). It is a cluster of 15 research projects supported by the European Commission with a budget of €25 million. The project brings together around 160 research institutions from over 20 countries. It looks at whether the biosphere, and above all forests, can reduce the concentration of carbon dioxide in the atmosphere, the principal cause of climate warming. The Earth’s biosphere can absorb more carbon than it releases. European forests could therefore be huge carbon sinks. CarboEurope’s preliminary results point to a CO2 absorption rate of up to 30% of EU annual industrial emissions.



According to European Research Commissioner Philippe Busquin: “Through the CarboEurope initiative, our best scientists across Europe are working together to be able to better quantify the capacity of forests to absorb and store carbon. This is particularly important if we want to be able to meet the stringent Kyoto Protocol targets for cutting CO2 levels. This issue is on the international agenda, in view of the Kyoto follow-up meeting in New Dehli . Over the next four years, the EU will devote €700 million to support research on global change and ecosystems. More research will help the EU promote its sustainable development agenda on the world stage.”

Once finalised, CarboEurope will be able to measure and check progress towards the Kyoto target, i.e. the planned CO2 reduction in the atmosphere. In order to achieve this aim, a large carbon monitoring network has been established across Europe at ground level and in the air. Measurements will be analysed and integrated through computer modelling. To date, CarboEurope has produced significant evidence that the European biosphere is absorbing the equivalent of 10-30% of annual industrial CO2 emissions. CarboEurope will also analyse how a changing climate might modify, and eventually reduce, the biosphere’s capacity for absorbing CO2.


Sustainable forest management can and should play a key role in protecting and enhancing carbon stocks and combating climate change. The project shows that semi-natural forests with high bio-diversity and a different age class structure are most able to meet these targets. In addition, it also found that old unspoiled forests still absorb carbon and that the protection of these forests should receive high priority in order to protect the large carbon stocks.

CarboEurope is the world’s first research project in which a coherent, comprehensive integration of terrestrial and atmospheric carbon sciences has been achieved on a continental scale. The US, Japan and China plan to launch similar initiatives.

Fabio Fabbi | European Commission
Further information:
http://www.bgc-jena.mpg.de/public/carboeur/

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>