Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooking oils boost low sulfur diesel fuel and engine lubricant performance

16.10.2002


Penn State engineers have shown that adding specially treated cooking oils, such as soybean, canola or sunflower oil, to mandated low sulfur diesel fuels and engine lubricants reduces friction and wear.



Dr. Joseph Perez, adjunct professor of chemical engineering and leader of the project, said, "Low sulfur diesel fuels mandated in California will soon be required in all states to enable diesel engines to meet the 2004 emission regulations. Removal of sulfur from the fuel causes severe wear problems in fuel injector systems."

"We’ve shown that adding as little as 10 percent of a specially-treated mixture of vegetable oil and fuel reduces both friction and wear," he said.


"There has been concern that there might be an insufficient volume of vegetable oil to meet both food and fuel needs," Perez added. "However, our results show that when the vegetable oil-fuel mixture is oxygen-treated, you need only 2 percent vegetable oil to produce the same friction and wear performance as current high sulfur diesel fuel."

The Penn State team has also conducted tests with four vegetable-based engine oils mixed with proprietary additives and compared them with a commercial petroleum-based oil. Although differences were found among the oils, all of the vegetable-based lubricants showed equivalent performance in laboratory tests and improvement in lubricity over the petroleum product.

"The biodegradable oils are effective lubricants and have the potential to displace petroleum-based products in various applications including engine oils," Perez says. "Vegetable oils are renewable resources reducing our dependency on imported oil."

The Penn State engineer described the team’s work most recently at the 39th Annual Technical Meeting of the Society of Engineering Science, being held at Penn State Oct. 14-16. Perez presented his paper, "Friction and Wear Studies of Fuel and Lubricants Containing Vegetable Oils", on Tuesday, Oct. 15. Perez’s co-authors are Dr. Wallis Lloyd, adjunct professor of chemical engineering and graduate students, Kraipat Cheenkiachorn and Kimberly Wain.

The team also evaluated the role of particulate buildup on wear when new, extended use, non-vegetable diesel oils were used. The oils were run in diesel trucks and not changed for 75,000 to 100,000 miles. Make-up oil was added as required.

Perez noted, "Current diesel engine emission regulations require significant reductions of particulate material and nitrogen oxides. To meet these regulations, many engines use cooled exhaust gas recirculation systems, which force 5 to 15 percent of the exhaust back through an intercooler and into the intake air.

Although beneficial to the reduction of regulated emission, the system places severe stress on the lubricant since it must handle increased particulates, acidic components and water in the combustion zone from blowby past the piston rings."

The team’s tests showed that wear increased with increasing mileage with the major contributor believed to be the particulate content of the crankcase oil. They note, "To solve these problems and meet the next round of emission regulations in 2007 is a serious challenge to additive and lubricant manufacturers and may involve a quantum leap in additive technology. Renewable oils may play a significant role in the development of these future engine oils."


The extended use study was also reported at the Society of Engineering Science meeting at Penn State in a paper, A Study of Friction and Wear of Used Diesel Engine Oils." The research projects were supported by a chemical engineering tribology consortium including Cargill, Caterpillar, Cummins, NCAUR-USDA (Peoria, IL) and Valvoline.

Barbara Hale | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>