Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control of methane emissions would reduce both global warming and air pollution, researchers find

09.10.2002


Both air pollution and global warming could be reduced by controlling emissions of methane gas, according to a new study by scientists at Harvard University, the Argonne National Laboratory, and the Environmental Protection Agency. The reason, they say, is that methane is directly linked to the production of ozone in the troposphere, the lowest part of Earth’s atmosphere, extending from the surface to around 12 kilometers [7 miles] altitude. Ozone is the primary constituent of smog and both methane and ozone are significant greenhouse gases.



A simulation based upon emissions projections by the Intergovernmental Panel on Climate Change (IPCC) predicts a longer and more intense ozone season in the United States by 2030, despite domestic emission reductions, the researchers note. Mitigation should therefore be considered on a global scale, the researchers say, and must take into account a rising global background level of ozone. Currently, the U.S. standard is based upon 84 parts per billion by volume of ozone, not to be exceeded more than three times per year, a standard that is not currently met nationwide. In Europe, the standard is much stricter, 55-65 parts of ozone per billion by volume, but these targets are also exceeded in many European countries.

Writing this month in the journal Geophysical Research Letters, Arlene M. Fiore and her colleagues say that one way to simultaneously decrease ozone pollution and greenhouse warming is to reduce methane emissions. Ozone is formed in the troposphere by chemical reactions involving methane, other organic compounds, and carbon monoxide, in the presence of nitrogen oxides and sunlight. Methane is known to be a major source of ozone throughout the troposphere, but is not usually considered to play a key role in the production of ozone smog in surface air, because of its long lifetime.


Sources of manmade methane include, notably, herds of cattle and other ungulates, rice production, and leaks of natural gas from pipelines, according to the IPCC. In addition, natural sources of methane include wetlands, termites, oceans, and gas hydrate nodules on the sea floor.

In a baseline study in 1995, 60 percent of methane emissions to the atmosphere were the result of human activity. The IPCC’s A1 scenario, which Fiore characterizes as "less optimistic in terms of anticipated emissions than a companion B1 scenario," posits economic development as the primary policy influencing future trends of manmade emissions in most countries. Under A1, emissions would increase globally from 1995 to 2030, but their distribution would shift. Manmade nitrogen oxides would decline by 10 percent in the developed world, but increase by 130 percent in developing countries. During the same period, methane emissions would increase by 43 percent globally, according to the A1 scenario.

The researchers find that a reduction of manmade methane by 50 percent would have a greater impact on global tropospheric ozone than a comparable reduction in manmade nitrogen oxide emissions. Reducing surface nitrogen oxide emissions does effectively improve air quality by decreasing surface ozone levels, but this impact tends to be localized, and does not yield much benefit in terms of greenhouse warming. Reductions in methane emissions would, however, help to decrease greenhouse warming by decreasing both methane and ozone in the atmosphere world-wide, and this would also help to reduce surface air pollution.

Both in the United States and Europe, aggressive programs of emission controls aimed at lowering ozone-based pollution may be offset by rising emissions of methane and nitrogen oxides from developing countries, the researchers write. Pollution could therefore increase, despite these controls, and the summertime pollution season would actually lengthen, according to the simulation under the A1 scenario.


The study was funded by the Environmental Protection Agency (EPA), National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF).

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org/

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>