Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control of methane emissions would reduce both global warming and air pollution, researchers find

09.10.2002


Both air pollution and global warming could be reduced by controlling emissions of methane gas, according to a new study by scientists at Harvard University, the Argonne National Laboratory, and the Environmental Protection Agency. The reason, they say, is that methane is directly linked to the production of ozone in the troposphere, the lowest part of Earth’s atmosphere, extending from the surface to around 12 kilometers [7 miles] altitude. Ozone is the primary constituent of smog and both methane and ozone are significant greenhouse gases.



A simulation based upon emissions projections by the Intergovernmental Panel on Climate Change (IPCC) predicts a longer and more intense ozone season in the United States by 2030, despite domestic emission reductions, the researchers note. Mitigation should therefore be considered on a global scale, the researchers say, and must take into account a rising global background level of ozone. Currently, the U.S. standard is based upon 84 parts per billion by volume of ozone, not to be exceeded more than three times per year, a standard that is not currently met nationwide. In Europe, the standard is much stricter, 55-65 parts of ozone per billion by volume, but these targets are also exceeded in many European countries.

Writing this month in the journal Geophysical Research Letters, Arlene M. Fiore and her colleagues say that one way to simultaneously decrease ozone pollution and greenhouse warming is to reduce methane emissions. Ozone is formed in the troposphere by chemical reactions involving methane, other organic compounds, and carbon monoxide, in the presence of nitrogen oxides and sunlight. Methane is known to be a major source of ozone throughout the troposphere, but is not usually considered to play a key role in the production of ozone smog in surface air, because of its long lifetime.


Sources of manmade methane include, notably, herds of cattle and other ungulates, rice production, and leaks of natural gas from pipelines, according to the IPCC. In addition, natural sources of methane include wetlands, termites, oceans, and gas hydrate nodules on the sea floor.

In a baseline study in 1995, 60 percent of methane emissions to the atmosphere were the result of human activity. The IPCC’s A1 scenario, which Fiore characterizes as "less optimistic in terms of anticipated emissions than a companion B1 scenario," posits economic development as the primary policy influencing future trends of manmade emissions in most countries. Under A1, emissions would increase globally from 1995 to 2030, but their distribution would shift. Manmade nitrogen oxides would decline by 10 percent in the developed world, but increase by 130 percent in developing countries. During the same period, methane emissions would increase by 43 percent globally, according to the A1 scenario.

The researchers find that a reduction of manmade methane by 50 percent would have a greater impact on global tropospheric ozone than a comparable reduction in manmade nitrogen oxide emissions. Reducing surface nitrogen oxide emissions does effectively improve air quality by decreasing surface ozone levels, but this impact tends to be localized, and does not yield much benefit in terms of greenhouse warming. Reductions in methane emissions would, however, help to decrease greenhouse warming by decreasing both methane and ozone in the atmosphere world-wide, and this would also help to reduce surface air pollution.

Both in the United States and Europe, aggressive programs of emission controls aimed at lowering ozone-based pollution may be offset by rising emissions of methane and nitrogen oxides from developing countries, the researchers write. Pollution could therefore increase, despite these controls, and the summertime pollution season would actually lengthen, according to the simulation under the A1 scenario.


The study was funded by the Environmental Protection Agency (EPA), National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF).

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org/

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>