Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control of methane emissions would reduce both global warming and air pollution, researchers find

09.10.2002


Both air pollution and global warming could be reduced by controlling emissions of methane gas, according to a new study by scientists at Harvard University, the Argonne National Laboratory, and the Environmental Protection Agency. The reason, they say, is that methane is directly linked to the production of ozone in the troposphere, the lowest part of Earth’s atmosphere, extending from the surface to around 12 kilometers [7 miles] altitude. Ozone is the primary constituent of smog and both methane and ozone are significant greenhouse gases.



A simulation based upon emissions projections by the Intergovernmental Panel on Climate Change (IPCC) predicts a longer and more intense ozone season in the United States by 2030, despite domestic emission reductions, the researchers note. Mitigation should therefore be considered on a global scale, the researchers say, and must take into account a rising global background level of ozone. Currently, the U.S. standard is based upon 84 parts per billion by volume of ozone, not to be exceeded more than three times per year, a standard that is not currently met nationwide. In Europe, the standard is much stricter, 55-65 parts of ozone per billion by volume, but these targets are also exceeded in many European countries.

Writing this month in the journal Geophysical Research Letters, Arlene M. Fiore and her colleagues say that one way to simultaneously decrease ozone pollution and greenhouse warming is to reduce methane emissions. Ozone is formed in the troposphere by chemical reactions involving methane, other organic compounds, and carbon monoxide, in the presence of nitrogen oxides and sunlight. Methane is known to be a major source of ozone throughout the troposphere, but is not usually considered to play a key role in the production of ozone smog in surface air, because of its long lifetime.


Sources of manmade methane include, notably, herds of cattle and other ungulates, rice production, and leaks of natural gas from pipelines, according to the IPCC. In addition, natural sources of methane include wetlands, termites, oceans, and gas hydrate nodules on the sea floor.

In a baseline study in 1995, 60 percent of methane emissions to the atmosphere were the result of human activity. The IPCC’s A1 scenario, which Fiore characterizes as "less optimistic in terms of anticipated emissions than a companion B1 scenario," posits economic development as the primary policy influencing future trends of manmade emissions in most countries. Under A1, emissions would increase globally from 1995 to 2030, but their distribution would shift. Manmade nitrogen oxides would decline by 10 percent in the developed world, but increase by 130 percent in developing countries. During the same period, methane emissions would increase by 43 percent globally, according to the A1 scenario.

The researchers find that a reduction of manmade methane by 50 percent would have a greater impact on global tropospheric ozone than a comparable reduction in manmade nitrogen oxide emissions. Reducing surface nitrogen oxide emissions does effectively improve air quality by decreasing surface ozone levels, but this impact tends to be localized, and does not yield much benefit in terms of greenhouse warming. Reductions in methane emissions would, however, help to decrease greenhouse warming by decreasing both methane and ozone in the atmosphere world-wide, and this would also help to reduce surface air pollution.

Both in the United States and Europe, aggressive programs of emission controls aimed at lowering ozone-based pollution may be offset by rising emissions of methane and nitrogen oxides from developing countries, the researchers write. Pollution could therefore increase, despite these controls, and the summertime pollution season would actually lengthen, according to the simulation under the A1 scenario.


The study was funded by the Environmental Protection Agency (EPA), National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF).

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>