Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


`Glowing` technique could detect river pollution


New technology used to analyse dissolved organic matter in river water could also help scientists detect and monitor pollution, according to a new research published in the journal Hydrological Processes.

Dissolved organic matter is found in all river water, and can come from both a natural source such as the soil, as well as human sources such as organic pollutants. It can produce natural fluorescence which can be seen using high-tech equipment.

Researchers from Newcastle University took samples of the water in the River Ouseburn at Newcastle, and found that 70% could be correctly classified to the river`s tributaries by measuring the natural fluorescence in the water.

Occasions when the scientists were unable to discriminate the tributary waters were due to either pollution or strong seasonal differences in dissolved organic matter.

Fluorescence is the process where molecules emit light after being energised. For example, glow in the dark toys fluoresce after being energised by ultra-violet daylight.

River waters fluoresce at wavelengths that the eye cannot see. They would also seem to glow in the dark if our eyes were sensitive to ultraviolet light.

However, the scientists used machines called spectrophotometers, which can see this fluorescence. Recent technological advances permit the rapid and precise measurement of river water fluorescence.

Dr Andy Baker, of the Centre for Land Use and Water Resources, Newcastle University, who led the research team, said: "Results suggest that spectrophotometric techniques have considerable potential in the fingerprinting of dissolved organic matter in rivers.

"This is very important as up until now it has not been possible to separate the dissolved organic matter fractions in river water. However, our results mean that it is now possible to use dissolved organic matter as a natural fingerprint of different water sources, and to monitor and detect organic pollutants. "

Dr Andy Baker | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>