Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landcover changes may rival greenhouse gases as cause of climate change

01.10.2002


These simulations are examples of how global land-use changed from 1700 to 1990. The human-disturbed landscape includes intensive cropland (red), and marginal cropland used for grazing (pink). Other landscape includes, for example, tropical evergreen and deciduous forest (dark green), savanna (light green), grassland and steppe (yellow), open shrubland (maroon), temperate deciduous forest (blue), temperate needleleaf evergreen forest (light yellow), and hot desert (orange). Of particular importance in this paper is the expansion of the cropland and grazed land between 1700 and 1900. Credit: from Klein Goldewijk, K., 2001: Estimating global land use change over the past 300 years: The HYDE Database. Global Biogeochemical Cycles, 15, 417-433


Global Land Use in 1990
Credit: from Klein Goldewijk, K., 2001: Estimating global land use change over the past 300 years: The HYDE Database. Global Biogeochemical Cycles, 15, 417-433


While many scientists and policy makers have focused only on how heat-trapping gases like carbon dioxide are altering our global climate, a new NASA-funded study points to the importance of also including human-caused land-use changes as a major factor contributing to climate change.

Land surface changes, like urban sprawl, deforestation and reforestation, and agricultural and irrigation practices strongly affect regional surface temperatures, precipitation and larger-scale atmospheric circulation. The study argues that human-caused land surface changes in places like North America, Europe, and southeast Asia, redistribute heat regionally and globally within the atmosphere and may actually have a greater impact on climate than that due to anthropogenic greenhouse gases combined.

The study also proposes a new method for comparing different human-influenced agents of climate change in terms of the redistribution of heat over land and in the atmosphere. Using a single unit of measurement may open the door to future work that more accurately represents human-caused climate change.



"Our work suggests that the impacts of human-caused landcover changes on climate are at least as important, and quite possibly more important than those of carbon dioxide," said Roger Pielke, Sr., an atmospheric scientist at Colorado State University, Fort Collins, Colo., and lead author of the study. "Through landcover changes over the last 300 years, we may have already altered the climate more than would occur associated with the radiative effect of a doubling of carbon dioxide." If carbon dioxide (CO2) emissions continue at current rates, atmospheric CO2 concentrations are expected to double by 2050. Land surface changes will also continue to occur.

Types of land surface strongly influence how the Sun’s energy is distributed back to the atmosphere. For example, if a rainforest is removed and replaced with crops, there is less transpiration, or evaporation of water from leaves. Less transpiration leads to warmer temperatures in that area. On the other hand, if farmland is irrigated, more water is transpired and also evaporated from moist soils, which cools and moistens the atmosphere, and can affect precipitation and cloudiness.

Similarly, forests may influence the climate in more complicated ways than previously thought. For example, in regions with heavy snowfall, reforestation or afforestation would cause the land to reflect less sunlight, and more heat would be absorbed, resulting in a net warming effect despite the removal of CO2 from the atmosphere through photosynthesis during the growing season. Further, reforestation could increase transpiration in an area, putting more water vapor in the air. Water vapor in the troposphere is the biggest contributor to greenhouse gas warming.

Local land surface changes can also influence the atmosphere in far-reaching ways, much like regional warming of tropical eastern and central Pacific Ocean waters known as El Niño. El Niño events create moist rising air, thunderstorms and cumulus clouds, which in turn alter atmospheric circulations that export heat, moisture, and energy to higher latitudes. Tropical land surface changes should be expected to play a greater role on global climate than El Niño, given that thunderstorms prefer to form over land, and the fact that the large area of tropical land-use changes far exceeds the relatively small area of water responsible for El Niño. Impacts of land use changes are harder to detect because they are permanent, as opposed to El Niño, which comes and goes.

Pielke Sr., and colleagues propose a new method for measuring the impacts of both greenhouse gases and landcover changes by using a formula that quantifies all the various anthropogenic climate change factors in terms of the amount of heat that is redistributed from one area to another. This heat redistribution is stated in terms of watts per meter squared, or the amount of heat associated with a square meter area. For example, if a flashlight generated heat of one watt that covers a square meter, then the heat energy emitted would be one watt per meter squared.

By using a measure based on the spatial redistribution of heat to quantify the different human influences on climate, including landcover changes and greenhouse gases, the researchers hope to achieve a more accurate portrayal of all of the anthropogenic influences on climate change in future research.


*** The paper was published in a recent issue of the Philosophical Transactions of the Royal Society of London. The research was funded by grants from NASA and the National Science Foundation. ***

Krishna Ramanujan | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>