Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landcover changes may rival greenhouse gases as cause of climate change

01.10.2002


These simulations are examples of how global land-use changed from 1700 to 1990. The human-disturbed landscape includes intensive cropland (red), and marginal cropland used for grazing (pink). Other landscape includes, for example, tropical evergreen and deciduous forest (dark green), savanna (light green), grassland and steppe (yellow), open shrubland (maroon), temperate deciduous forest (blue), temperate needleleaf evergreen forest (light yellow), and hot desert (orange). Of particular importance in this paper is the expansion of the cropland and grazed land between 1700 and 1900. Credit: from Klein Goldewijk, K., 2001: Estimating global land use change over the past 300 years: The HYDE Database. Global Biogeochemical Cycles, 15, 417-433


Global Land Use in 1990
Credit: from Klein Goldewijk, K., 2001: Estimating global land use change over the past 300 years: The HYDE Database. Global Biogeochemical Cycles, 15, 417-433


While many scientists and policy makers have focused only on how heat-trapping gases like carbon dioxide are altering our global climate, a new NASA-funded study points to the importance of also including human-caused land-use changes as a major factor contributing to climate change.

Land surface changes, like urban sprawl, deforestation and reforestation, and agricultural and irrigation practices strongly affect regional surface temperatures, precipitation and larger-scale atmospheric circulation. The study argues that human-caused land surface changes in places like North America, Europe, and southeast Asia, redistribute heat regionally and globally within the atmosphere and may actually have a greater impact on climate than that due to anthropogenic greenhouse gases combined.

The study also proposes a new method for comparing different human-influenced agents of climate change in terms of the redistribution of heat over land and in the atmosphere. Using a single unit of measurement may open the door to future work that more accurately represents human-caused climate change.



"Our work suggests that the impacts of human-caused landcover changes on climate are at least as important, and quite possibly more important than those of carbon dioxide," said Roger Pielke, Sr., an atmospheric scientist at Colorado State University, Fort Collins, Colo., and lead author of the study. "Through landcover changes over the last 300 years, we may have already altered the climate more than would occur associated with the radiative effect of a doubling of carbon dioxide." If carbon dioxide (CO2) emissions continue at current rates, atmospheric CO2 concentrations are expected to double by 2050. Land surface changes will also continue to occur.

Types of land surface strongly influence how the Sun’s energy is distributed back to the atmosphere. For example, if a rainforest is removed and replaced with crops, there is less transpiration, or evaporation of water from leaves. Less transpiration leads to warmer temperatures in that area. On the other hand, if farmland is irrigated, more water is transpired and also evaporated from moist soils, which cools and moistens the atmosphere, and can affect precipitation and cloudiness.

Similarly, forests may influence the climate in more complicated ways than previously thought. For example, in regions with heavy snowfall, reforestation or afforestation would cause the land to reflect less sunlight, and more heat would be absorbed, resulting in a net warming effect despite the removal of CO2 from the atmosphere through photosynthesis during the growing season. Further, reforestation could increase transpiration in an area, putting more water vapor in the air. Water vapor in the troposphere is the biggest contributor to greenhouse gas warming.

Local land surface changes can also influence the atmosphere in far-reaching ways, much like regional warming of tropical eastern and central Pacific Ocean waters known as El Niño. El Niño events create moist rising air, thunderstorms and cumulus clouds, which in turn alter atmospheric circulations that export heat, moisture, and energy to higher latitudes. Tropical land surface changes should be expected to play a greater role on global climate than El Niño, given that thunderstorms prefer to form over land, and the fact that the large area of tropical land-use changes far exceeds the relatively small area of water responsible for El Niño. Impacts of land use changes are harder to detect because they are permanent, as opposed to El Niño, which comes and goes.

Pielke Sr., and colleagues propose a new method for measuring the impacts of both greenhouse gases and landcover changes by using a formula that quantifies all the various anthropogenic climate change factors in terms of the amount of heat that is redistributed from one area to another. This heat redistribution is stated in terms of watts per meter squared, or the amount of heat associated with a square meter area. For example, if a flashlight generated heat of one watt that covers a square meter, then the heat energy emitted would be one watt per meter squared.

By using a measure based on the spatial redistribution of heat to quantify the different human influences on climate, including landcover changes and greenhouse gases, the researchers hope to achieve a more accurate portrayal of all of the anthropogenic influences on climate change in future research.


*** The paper was published in a recent issue of the Philosophical Transactions of the Royal Society of London. The research was funded by grants from NASA and the National Science Foundation. ***

Krishna Ramanujan | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Species may appear deceptively resilient to climate change
24.11.2017 | University of California - Davis

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>