Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbialities: Indicators Of Environmental And Climatic Changes?

27.09.2002


Microbial communities can adapt to and colonize all kinds of habitat, owing to their metabolic versatility. They occur in abyssal oceanic situations, in polar ice caps, also in thermal springs, lakes, rivers, deserts and on carbonate (karst) platform systems.

Under favourable conditions, the microbial communities can proliferate and contribute to the construction of monumental edifices, termed microbialites2. They can do this in marine environments or in terrestrial settings. These structures are composed of mixed organic and sedimentary material resulting from the interaction between prokaryote organisms (bacteria, cyanobacteria) or eukaryotes (particularly algae and fungi), or both, with sedimentary processes and physico-chemical parameters of the particular environment. Marine microbialite morphology is extremely varied, in the form of mat-like accumulations, veils, domes, pompons shapes, clumps, or viscous masses.

The proliferation of microbialites in present-day environments, whether or not under the pressure of human activity, appears very recent (emerging over the past 20 years). It usually coincides with a creeping decay of coral community, a trend now seen in most regions of the world. This process is causing great concern, particularly so because the microbial structures grow rapidly and some of the cyanobacterial species involved are potentially toxic. Such changes could stem from recent modifications in environmental and climatic conditions (regional or local-scale). These could be natural or induced by human activity. Scientists are therefore looking into the significance that should be attached to these microbial structures as indicators of environmental climatic disturbances.



As a contribution to the National Coastal Environment Programme, two IRD research units (UR “ Paleotropic ” and UR103 “ Camelia ”)1 are studying, in conjunction with the Biological Sciences Centre of Boston University (USA), the Max Planck Institute of Marine Biology at Bremen (Germany) and the Department of the Microbiology of the University of Arizona (USA), the microbialites which grow in lagoons, on the flat karst platforms or the exterior slopes of reefs of New Caledonia and French Polynesia.

The main aims are to identify the microbial communities involved in constructing microbialites and evaluate their diversity and to define what environmental factors are causing them to spread. Another major issue is to assess the importance of the microbialite phenomenon in the biogeochemical cycles of recent reef systems. The microbial communities participate actively in the cycles of materials and elements (especially in the nitrogen and carbon cycles), but their role has often been underestimated, particularly in reef systems.

In the New Caledonian reefs, the research team has used microscope observation and microbiological techniques to characterize 24 genera and over 60 species of cyanobacteria, mainly of the filamentous type and, to a lesser extent, coccoidal (free spherical forms). They build structures diverse in colour and morphology, including hemispherical domes (of 1 to 10 centimetres), mat-like forms, filamentous coverings, masses of either filamentous or gelatinous texture, or mixed –which develop in sediments or directly on the accumulation of algae and corals, whether the latter are alive or dead. In some cases, these structures, are in competition with the corals for light and mineral salts. According to the first observations, it seems that the growth of these microbialites on living corals could cause the corals to degenerate irreversibly. The researchers observed that when microbialites developed, necrosis of coral colonies occurred.

The nature, density and distribution of these different types of microbial structure vary in the course of the year. Microbialites are sensitive to seasonal variations of environmental physical and chemical parameters. They develop more during the hot humid season. In the reef systems studied in New Caledonia and French Polynesia, a rise in sea surface temperature stimulates their growth. Spreading of microbialites also seems to correspond to microbial communities’ ability to respond rapidly to even small variations in nutrient levels in the reef environment, mainly nitrates.

These investigations conducted in the Pacific demonstrate that microbialites can be considered as indicators of environmental disturbances and that their proliferation coincides with periods of stress affecting the reef communities. Beyond the seasonal variations observed, the volume of microbialites intruding into coral reefs studied has increased noticeably in the past few years, making it imperative to put in place surveillance networks.


1. UR 55 “ Paleotropic” conducts research on past and recent climatic variations by analysing lacustrine, lagoonal and marine sediments. UR 103 “ Camelia ” works on the mechanisms of transport and conversion of terrigenous material and arthropogenic input (including metals) responsible for hypersedimentation and eutrophication in lagoonal ecosystems.
2. Microbialites have existed on the Earth’s surface for 3.5 billion years and probably played a major role in forming the atmosphere as we know it today.

Marie-Lise Sabrie | alfa
Further information:
http://www.ird.nc

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>