Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microbialities: Indicators Of Environmental And Climatic Changes?


Microbial communities can adapt to and colonize all kinds of habitat, owing to their metabolic versatility. They occur in abyssal oceanic situations, in polar ice caps, also in thermal springs, lakes, rivers, deserts and on carbonate (karst) platform systems.

Under favourable conditions, the microbial communities can proliferate and contribute to the construction of monumental edifices, termed microbialites2. They can do this in marine environments or in terrestrial settings. These structures are composed of mixed organic and sedimentary material resulting from the interaction between prokaryote organisms (bacteria, cyanobacteria) or eukaryotes (particularly algae and fungi), or both, with sedimentary processes and physico-chemical parameters of the particular environment. Marine microbialite morphology is extremely varied, in the form of mat-like accumulations, veils, domes, pompons shapes, clumps, or viscous masses.

The proliferation of microbialites in present-day environments, whether or not under the pressure of human activity, appears very recent (emerging over the past 20 years). It usually coincides with a creeping decay of coral community, a trend now seen in most regions of the world. This process is causing great concern, particularly so because the microbial structures grow rapidly and some of the cyanobacterial species involved are potentially toxic. Such changes could stem from recent modifications in environmental and climatic conditions (regional or local-scale). These could be natural or induced by human activity. Scientists are therefore looking into the significance that should be attached to these microbial structures as indicators of environmental climatic disturbances.

As a contribution to the National Coastal Environment Programme, two IRD research units (UR “ Paleotropic ” and UR103 “ Camelia ”)1 are studying, in conjunction with the Biological Sciences Centre of Boston University (USA), the Max Planck Institute of Marine Biology at Bremen (Germany) and the Department of the Microbiology of the University of Arizona (USA), the microbialites which grow in lagoons, on the flat karst platforms or the exterior slopes of reefs of New Caledonia and French Polynesia.

The main aims are to identify the microbial communities involved in constructing microbialites and evaluate their diversity and to define what environmental factors are causing them to spread. Another major issue is to assess the importance of the microbialite phenomenon in the biogeochemical cycles of recent reef systems. The microbial communities participate actively in the cycles of materials and elements (especially in the nitrogen and carbon cycles), but their role has often been underestimated, particularly in reef systems.

In the New Caledonian reefs, the research team has used microscope observation and microbiological techniques to characterize 24 genera and over 60 species of cyanobacteria, mainly of the filamentous type and, to a lesser extent, coccoidal (free spherical forms). They build structures diverse in colour and morphology, including hemispherical domes (of 1 to 10 centimetres), mat-like forms, filamentous coverings, masses of either filamentous or gelatinous texture, or mixed –which develop in sediments or directly on the accumulation of algae and corals, whether the latter are alive or dead. In some cases, these structures, are in competition with the corals for light and mineral salts. According to the first observations, it seems that the growth of these microbialites on living corals could cause the corals to degenerate irreversibly. The researchers observed that when microbialites developed, necrosis of coral colonies occurred.

The nature, density and distribution of these different types of microbial structure vary in the course of the year. Microbialites are sensitive to seasonal variations of environmental physical and chemical parameters. They develop more during the hot humid season. In the reef systems studied in New Caledonia and French Polynesia, a rise in sea surface temperature stimulates their growth. Spreading of microbialites also seems to correspond to microbial communities’ ability to respond rapidly to even small variations in nutrient levels in the reef environment, mainly nitrates.

These investigations conducted in the Pacific demonstrate that microbialites can be considered as indicators of environmental disturbances and that their proliferation coincides with periods of stress affecting the reef communities. Beyond the seasonal variations observed, the volume of microbialites intruding into coral reefs studied has increased noticeably in the past few years, making it imperative to put in place surveillance networks.

1. UR 55 “ Paleotropic” conducts research on past and recent climatic variations by analysing lacustrine, lagoonal and marine sediments. UR 103 “ Camelia ” works on the mechanisms of transport and conversion of terrigenous material and arthropogenic input (including metals) responsible for hypersedimentation and eutrophication in lagoonal ecosystems.
2. Microbialites have existed on the Earth’s surface for 3.5 billion years and probably played a major role in forming the atmosphere as we know it today.

Marie-Lise Sabrie | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>