Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fragmentation may be linked to local amphibian extinctions

25.09.2002


Habitat fragmentation is a primary threat to amphibians worldwide, and new research suggests one of the reasons why. Experimental evidence for three species shows that fragmentation may hinder the dispersal of juvenile amphibians, which could contribute to population declines.



"Habitat fragmentation is likely to reduce dispersal rates between local populations of these three species," say Betsie Rothermel and Raymond Semlitsch of the University of Missouri in Columbia in the October issue of Conservation Biology.

Dispersal of juvenile amphibians is critical to maintaining populations of pond-breeding species. Local populations of these amphibians naturally die out frequently but are replenished by juveniles from other ponds (adults rarely switch breeding sites). "Interpond dispersal is the means by which declining populations may be rescued or recolonized following extinction," say the researchers. However, little is known about how habitat disturbance affects the dispersal of juvenile amphibians.


Rothermel and Semlitsch studied the movements of three types of juvenile amphibians (spotted salamander, small-mouthed salamander and American toad) in the 127-ha C.W. Green Conservation Area in Boone County, Missouri. In the midwestern U.S., much of the land around amphibian breeding sites has been converted from forest to cropland or pasture. The researchers collected amphibian eggs in the wild, raised them in tanks, transferred the larvae to artificial pools on the edges between forest and old fields, and then studied their movements during the first two months after metamorphosis.

While small-mouthed salamanders showed no preference for forest or old field, the researchers found that the other two species studied moved farther into the forest than into old fields. Spotted salamanders moved almost eight times farther and toads moved more than three times farther (spotted salamanders moved 43 vs. 5 feet in the forest and old field, respectively; the toads moved 108 vs. 33 feet, respectively).

The juvenile toads’ preference for the forest came as a surprise because the species is ubiquitous, occurring in natural and disturbed habitats alike. The fact that the juvenile toads avoided the open field shows that juvenile behavior cannot be predicted based on adult behavior, say the researchers.

Rothermel and Semlitsch suggest that moving through fields would make the juvenile amphibians more vulnerable to predators or desiccation. They compared how fast juvenile salamanders desiccated in the forest and in the field, and found that in a 24-hour period they lost about a third more water in the field (6% vs. 4.5% of their body weight in the field and forest, respectively). This is not surprising because the maximum temperatures were roughly 10 degrees Celsius higher in field than in forest.

Rothermel concludes that conserving amphibian populations in highly fragmented forests may require connecting their habitat patches. "The results of this study suggest that juvenile amphibians might preferentially use corridors of natural vegetation," she says.

ADDITIONAL CONTACT INFORMATION:
*Raymond Semlitsch (573-884-6396, semlitschr@missouri.edu)

Betsie Rothermel | EurekAlert!
Further information:
http://www.biosci.missouri.edu/semlitsch/index.html
http://nasw.org/users/rmeadows
http://conservationbiology.org/

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>