Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fragmentation may be linked to local amphibian extinctions

25.09.2002


Habitat fragmentation is a primary threat to amphibians worldwide, and new research suggests one of the reasons why. Experimental evidence for three species shows that fragmentation may hinder the dispersal of juvenile amphibians, which could contribute to population declines.



"Habitat fragmentation is likely to reduce dispersal rates between local populations of these three species," say Betsie Rothermel and Raymond Semlitsch of the University of Missouri in Columbia in the October issue of Conservation Biology.

Dispersal of juvenile amphibians is critical to maintaining populations of pond-breeding species. Local populations of these amphibians naturally die out frequently but are replenished by juveniles from other ponds (adults rarely switch breeding sites). "Interpond dispersal is the means by which declining populations may be rescued or recolonized following extinction," say the researchers. However, little is known about how habitat disturbance affects the dispersal of juvenile amphibians.


Rothermel and Semlitsch studied the movements of three types of juvenile amphibians (spotted salamander, small-mouthed salamander and American toad) in the 127-ha C.W. Green Conservation Area in Boone County, Missouri. In the midwestern U.S., much of the land around amphibian breeding sites has been converted from forest to cropland or pasture. The researchers collected amphibian eggs in the wild, raised them in tanks, transferred the larvae to artificial pools on the edges between forest and old fields, and then studied their movements during the first two months after metamorphosis.

While small-mouthed salamanders showed no preference for forest or old field, the researchers found that the other two species studied moved farther into the forest than into old fields. Spotted salamanders moved almost eight times farther and toads moved more than three times farther (spotted salamanders moved 43 vs. 5 feet in the forest and old field, respectively; the toads moved 108 vs. 33 feet, respectively).

The juvenile toads’ preference for the forest came as a surprise because the species is ubiquitous, occurring in natural and disturbed habitats alike. The fact that the juvenile toads avoided the open field shows that juvenile behavior cannot be predicted based on adult behavior, say the researchers.

Rothermel and Semlitsch suggest that moving through fields would make the juvenile amphibians more vulnerable to predators or desiccation. They compared how fast juvenile salamanders desiccated in the forest and in the field, and found that in a 24-hour period they lost about a third more water in the field (6% vs. 4.5% of their body weight in the field and forest, respectively). This is not surprising because the maximum temperatures were roughly 10 degrees Celsius higher in field than in forest.

Rothermel concludes that conserving amphibian populations in highly fragmented forests may require connecting their habitat patches. "The results of this study suggest that juvenile amphibians might preferentially use corridors of natural vegetation," she says.

ADDITIONAL CONTACT INFORMATION:
*Raymond Semlitsch (573-884-6396, semlitschr@missouri.edu)

Betsie Rothermel | EurekAlert!
Further information:
http://www.biosci.missouri.edu/semlitsch/index.html
http://nasw.org/users/rmeadows
http://conservationbiology.org/

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>