Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA scientists use satellites to distinguish human pollution from other atmospheric particles

18.09.2002


Driven by precise new satellite measurements and sophisticated new computer models, a team of NASA researchers is now routinely producing the first global maps of fine aerosols that distinguish plumes of human-produced particulate pollution from natural aerosols.



In the current issue of the journal Nature, atmospheric scientists Yoram Kaufman, at NASA’s Goddard Space Flight Center, Greenbelt, Md., Didier Tanré and Olivier Boucher from CNRS (Centre National de la Recherche Scientifique) at the University of Lille, reported in a review paper that these global maps are an important breakthrough in the science of determining how much aerosol pollution comes from human activities. Aerosols are tiny solid or liquid particles suspended in the atmosphere. The authors stated that the next step is to quantify more precisely the roles human aerosol pollution plays in Earth’s weather and climate systems.

"Plumes of smoke and regional pollution are distinguished by their large concentrations of small particles (less than 1 micrometer) downwind of biomass burning sites and urban areas," Kaufman said. "These particles are important because, depending upon the type of particles produced, human pollution can either have a warming or cooling influence on climate, and they can either increase or decrease regional rainfall."


Distinguishing small from large aerosol particles requires good understanding of how aerosols reflect sunlight at key wavelengths of the solar spectrum. For the first time ever, the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flying aboard NASA’s Terra and Aqua satellites measures precisely the sunlight reflected by aerosols back to space every day over almost the entire planet at wavelengths spanning across the solar spectrum (from 0.41 to 2.2 micrometers).

Aerosol plumes comprised of smaller particles (less than 1 micrometer) reflect light at shorter wavelengths (blue light) much more strongly than plumes comprised of larger particles (greater than 1 micrometer) which scatter and reflect light roughly equally at short and long wavelengths (blue, green, red and near-infrared light). It is this basic understanding that helps scientists use MODIS data to distinguish human-produced aerosol.

However, there are exceptions to this rule. Kaufman noted that nature produces small particles too, while humans can generate large particles by changing land surface cover through agricultural practices and deforestation. Therefore, scientists need additional information-such as land use and fire activities, which are also observed by satellites, as well as information on population and economic activities-that is fed into advanced new computer aerosol models.

"Natural aerosols like salt particles from sea spray are typically widespread over larger areas and not particularly concentrated downwind of urban areas," Kaufman observed. "Or, they are particularly concentrated downwind of obviously natural sources, such as the streams of dust originating from the Sahara Desert."

Conversely, aerosols produced by humans are the result of urban pollution, industrial combustion, or burning vegetation. These plumes of pollutants appear in punctuated bursts of thick and concentrated plumes comprised of small particles. Or, they are concentrated downwind of regions obviously altered by human activities, such as deforested regions.

The authors find surprisingly good agreement between a new aerosol model (developed jointly by NASA Goddard and Georgia Tech) and the measurements now being made by the MODIS sensors. Examining global satellite images in concert with global-scale models and globally distributed ground-based measurements gives scientists the best tools they have ever had to estimate the effects of aerosols on climate and weather patterns around the world.

The new aerosol measurements collected by the Terra and Aqua satellites provide dramatic improvements over the measurements made by previous satellites over the last two decades. Another instrument on Terra, the Multi-angle Imaging SpectroRadiometer (MISR), observes aerosols by looking at the radiation reflected and scattered by aerosols in nine different directions. This multi-angle technique complements the multi-wavelength approach by NASA. NASA plans to further expand global aerosol research with the launch of satellite-based light imaging radars (lidars) that sends bursts of light to Earth and, like a radar signal, provide a measure of the altitude and vertical structure of aerosol plumes and clouds.

The Terra and Aqua satellites are part of NASA’s Earth Science Enterprise, a long-term research effort to understand our home planet.

Lynn Chandler | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/20020917pollutionpart.html
http://modis.gsfc.nasa.gov
http://earthobservatory.nasa.gov/Library/RemoteSensingAtmosphere/remote_sensing3.html

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>