Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA scientists use satellites to distinguish human pollution from other atmospheric particles

18.09.2002


Driven by precise new satellite measurements and sophisticated new computer models, a team of NASA researchers is now routinely producing the first global maps of fine aerosols that distinguish plumes of human-produced particulate pollution from natural aerosols.



In the current issue of the journal Nature, atmospheric scientists Yoram Kaufman, at NASA’s Goddard Space Flight Center, Greenbelt, Md., Didier Tanré and Olivier Boucher from CNRS (Centre National de la Recherche Scientifique) at the University of Lille, reported in a review paper that these global maps are an important breakthrough in the science of determining how much aerosol pollution comes from human activities. Aerosols are tiny solid or liquid particles suspended in the atmosphere. The authors stated that the next step is to quantify more precisely the roles human aerosol pollution plays in Earth’s weather and climate systems.

"Plumes of smoke and regional pollution are distinguished by their large concentrations of small particles (less than 1 micrometer) downwind of biomass burning sites and urban areas," Kaufman said. "These particles are important because, depending upon the type of particles produced, human pollution can either have a warming or cooling influence on climate, and they can either increase or decrease regional rainfall."


Distinguishing small from large aerosol particles requires good understanding of how aerosols reflect sunlight at key wavelengths of the solar spectrum. For the first time ever, the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flying aboard NASA’s Terra and Aqua satellites measures precisely the sunlight reflected by aerosols back to space every day over almost the entire planet at wavelengths spanning across the solar spectrum (from 0.41 to 2.2 micrometers).

Aerosol plumes comprised of smaller particles (less than 1 micrometer) reflect light at shorter wavelengths (blue light) much more strongly than plumes comprised of larger particles (greater than 1 micrometer) which scatter and reflect light roughly equally at short and long wavelengths (blue, green, red and near-infrared light). It is this basic understanding that helps scientists use MODIS data to distinguish human-produced aerosol.

However, there are exceptions to this rule. Kaufman noted that nature produces small particles too, while humans can generate large particles by changing land surface cover through agricultural practices and deforestation. Therefore, scientists need additional information-such as land use and fire activities, which are also observed by satellites, as well as information on population and economic activities-that is fed into advanced new computer aerosol models.

"Natural aerosols like salt particles from sea spray are typically widespread over larger areas and not particularly concentrated downwind of urban areas," Kaufman observed. "Or, they are particularly concentrated downwind of obviously natural sources, such as the streams of dust originating from the Sahara Desert."

Conversely, aerosols produced by humans are the result of urban pollution, industrial combustion, or burning vegetation. These plumes of pollutants appear in punctuated bursts of thick and concentrated plumes comprised of small particles. Or, they are concentrated downwind of regions obviously altered by human activities, such as deforested regions.

The authors find surprisingly good agreement between a new aerosol model (developed jointly by NASA Goddard and Georgia Tech) and the measurements now being made by the MODIS sensors. Examining global satellite images in concert with global-scale models and globally distributed ground-based measurements gives scientists the best tools they have ever had to estimate the effects of aerosols on climate and weather patterns around the world.

The new aerosol measurements collected by the Terra and Aqua satellites provide dramatic improvements over the measurements made by previous satellites over the last two decades. Another instrument on Terra, the Multi-angle Imaging SpectroRadiometer (MISR), observes aerosols by looking at the radiation reflected and scattered by aerosols in nine different directions. This multi-angle technique complements the multi-wavelength approach by NASA. NASA plans to further expand global aerosol research with the launch of satellite-based light imaging radars (lidars) that sends bursts of light to Earth and, like a radar signal, provide a measure of the altitude and vertical structure of aerosol plumes and clouds.

The Terra and Aqua satellites are part of NASA’s Earth Science Enterprise, a long-term research effort to understand our home planet.

Lynn Chandler | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/20020917pollutionpart.html
http://modis.gsfc.nasa.gov
http://earthobservatory.nasa.gov/Library/RemoteSensingAtmosphere/remote_sensing3.html

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>