Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After massive experiment, results favor wildlife corridors

17.09.2002


To combat urban sprawl and protect wildlife, many communities have set aside land for wildlife corridors linking natural areas to one another.



Public support for these greenways, however, has overshadowed a long-running debate among ecologists about whether they actually achieve their presumed benefits. The debate has been hobbled by a lack of definitive data, with many studies based solely on observations and others only on small-scale experiments, scientists say.

A University of Florida-led study may help resolve the issue. Set to appear next week in the Proceedings of the National Academy of Sciences, the study examines two barometers of healthy ecosystems – plant pollination by insects and the dispersal of seeds by birds – and concludes that corridors encourage the movement of plants and animals across "fragmented" landscape. The findings of the study are important, its authors say, because it is based on a much larger and more ambitious experiment than typically attempted.


"This is by far the largest experimental look at the effects of corridors that has ever been done," said Josh Tewksbury, a UF postdoctoral associate and the study’s lead author.

Intuitively, wildlife corridors make sense. First envisioned as early as the 1960s, they are seen as ways to allow wildlife and plants to spread across natural landscapes that have been cut into pieces by roads, development, logging or other disturbances. The idea is that corridors not only allow animals to find new resources, they also prevent the isolation of species – isolation that can lead to localized extinction if the habitat fragments are not accessible for reproduction or recolonization. Finding support for this seemingly simple theory, however, is more difficult than might appear, said Doug Levey, a UF professor of zoology and one of the study’s authors.

Previous studies have shown that wild areas connected by corridors have more wildlife or greater biodiversity than disconnected areas. But these studies often failed to account for other factors that may have influenced the observed differences, Levey said. For example, corridors in urban areas often lie along streams or rivers because these flood-prone areas tend to be left undeveloped. But waterways represent one type of habitat that may benefit wildlife and plants more than the corridors themselves, he said. If that’s the case, it would be better to preserve such habitats wherever they are rather than only those that connect fragments, he said.

Experiments on corridors, meanwhile, are difficult to pull off because the areas needed to test and repeat them are so large – at least for large animals that typically range over wide areas.

An experiment exploring whether corridors benefit black bears, for example, would require an area equal to the bears’ range of hundreds of miles. And other similarly huge natural areas would be needed to repeat the experiment to test its conclusions. As a result, most scientifically rigorous corridor experiments have taken place on much smaller scales. One noted experiment, for instance, focused on insect distribution on 20-by-20-square-inch plots of moss arranged in connected and unconnected patches.

The UF-led team sought to increase the scale considerably.

The researchers mapped out eight similar sites, each about 158 acres along the South Carolina-Georgia state line. This site, the Savannah River Site National Environmental Research Park, is a 482-square-mile federally protected research area originally set aside during the Cold War for nuclear weapons development.

Forests of 50-year-old pine trees dominate all eight sites. At the researchers’ request, the U.S. Forest Service arranged for workers to log trees and burn the remaining groundcover in selected areas, creating one central clearing and four peripheral clearings on each site. They also logged corridors connecting each central clearing to one of the peripheral clearings, leaving the others separated by the forests. Each the clearing measured about two acres.

With 40 total clearings, the scale of the experiment can best be appreciated from the air. As seen from a plane flying at several thousand feet, each one of the eight sites looks more like a large crop circle or alien launch pad than a biology experiment. From a satellite, the arrangement of eight total sites is even more impressive.

Created in 1999, the clearings quickly grew into fields. These habitat "patches" provided what Levey called "black and white" habitat types when compared with the forest – plants and animals found in the fields would never flourish in the forest and vice versa. Research on the sites lasted for two years, with most data collected in 2000 and 2001.

For one of two major experiments, the researchers planted male holly bushes in the central patch and female hollies in the four peripheral patches. They chose holly because it is not naturally present in the forest and the female trees cannot bear fruit unless pollinated by males. The researchers waited until the hollies had flowered and then measured the fruit set, or the percentage of flowers that turned into berries, in each of the clearings.

The result: The hollies in the connected patches were consistently more fruitful than in the unconnected ones. This indicated that more wasps, butterflies and other insect pollinators made it from each central patch through the corridor than through the forest.

When birds or other animals eat fruits, they often distribute the seeds to new locations in their droppings, an important mechanism of plant dispersal. To gauge the effects the corridors had on this process, the researchers marked thousands of seeds of wax myrtle and holly in the central patch with a sticky powder that can be seen only with a florescent light. The researchers then placed seed traps under 16 bird perches built in each of the connected and unconnected peripheral patches. Over several months, they collected and analyzed the resulting bird droppings in a lab.

Given the grand scale of the experiment, the work was not without difficulties. "We collected thousands and thousands of defecations from birds, and it takes a lot of time to go through them all," Tewksbury said. The resulting data revealed that significantly more droppings containing wax myrtle and holly seeds were carried from the central patches to the connected patches than to the unconnected patches. This indicated that more birds were flying between the connected patches than the unconnected ones. "There was almost double the (center patch’s) droppings in the connected receiver patches versus the unconnected patches," Levey said.

The findings may go well beyond pollination and seed dispersal. When plants have more pollen, they produce more fruit, attracting more birds, which distribute more seeds, which attract more birds and seed-eating animals, and so on. So although the experiment tested only two processes, it suggests that corridors can be beneficial in the much larger biological community.

"Our study suggests that these corridors do help in connecting populations, and theoretically they should help sustain networks of populations existing in increasingly fragmented landscapes," Tewksbury said.

The research team also included zoologists Nick Haddad, of North Carolina State University, Brent Danielson of Iowa State University, Sarah Sargent of Allegheny College in Pennsylvania and numerous graduate students.

Josh Tewksbury | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>