Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine biodiversity essential to preserving species

22.08.2002


A new study of marine ecosystems suggests that the preservation of biodiversity is more than just a lofty goal - it’s an absolute necessity to keep the system healthy and prevent both local or regional extinction of multiple species.



The population balance between various fish species, their competitors and their predators are all essential to the proper functioning of the ecosystem, the study showed, and overfishing of any one species can have ripple effects that destabilize the whole fishery.

The study was conducted by marine zoologists at Oregon State University and published this week in a professional journal, the Proceedings of the National Academy of Sciences. It was done on coral reefs in the Bahamas, which allowed the type of experimental manipulations that are usually impossible to do in a marine ecosystem.


"The research showed that all fish species within a food web are connected with one another, and the removal of any one species can cause whole populations to break down," said Mark Hixon, an OSU professor of zoology. "This is especially true when you take away the predatory species, which are a key to the natural balance and health of marine ecosystems." The study is particularly relevant to the global problems now being experienced in many commercial fisheries, Hixon said, because many of the fish species most commonly targeted by fisheries are marine predators.

In particular, this study confirmed the operation in a marine ecosystem of a concept that has long been recognized with animals in terrestrial ecosystems – that of "density dependent mortality." Basically, when a species population size is low, the mortality rate will also be low – predators tend to target species that are more abundant. And when a species population is high, the mortality rate will increase, as predators take advantage of the easy availability of food.

Other than the interaction between prey and predator, Hixon said, there is also an important role for competitors – two or more species that fight for the same resources. The competing species have negative effects on each other’s population, and distracted competitors can be more vulnerable to predation.

"This interaction has been known for some time in land ecosystems," Hixon said. "But it’s been much more difficult to demonstrate in the open ocean."

With experimental manipulations on coral reefs in the clear waters of the Bahamas, OSU scientists were able to isolate some reefs from others and selectively remove certain fish, their competitors or predators to observe the effect.

"We found that the removal of any one species can have ramifications for the whole ecosystem," Hixon said. "Without predation, a fish species can increase its population to an unsupportable size. Lacking food, fish become vulnerable to disease, changes in water conditions and ultimate collapse of that species or the whole fishery. Everything is connected to everything else."

In the Pacific Northwest, some of the key predatory species are lingcod, some larger rockfish and other groundfish.

The findings may help explain why some fish populations undergo such dramatic changes either naturally or when pressured by external forces such as fishing, Hixon said. It’s not unusual for fish populations within a certain species and location to vary by as much as 10 to 100 times.

However, when there’s a proper and natural balance between a species, its competitors and its predators, Hixon said, there is much less risk of population collapse or regional extinction.

The study was funded by a 4-year, $400,000 grant from the National Science Foundation, and also the National Undersea Research Program of the U.S. National Oceanic and Atmospheric Administration.

In continuing research, OSU scientists hope to study these processes within the context of marine reserves, and see if the maintenance of balanced and healthy fish populations in such reserves can have a positive influence on the availability of species elsewhere, including those sought in commercial or recreational fisheries outside the reserves.


By David Stauth, 541-737-0787
SOURCE: Mark Hixon, 541-737-5364


Mark Hixon | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>