Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine biodiversity essential to preserving species

22.08.2002


A new study of marine ecosystems suggests that the preservation of biodiversity is more than just a lofty goal - it’s an absolute necessity to keep the system healthy and prevent both local or regional extinction of multiple species.



The population balance between various fish species, their competitors and their predators are all essential to the proper functioning of the ecosystem, the study showed, and overfishing of any one species can have ripple effects that destabilize the whole fishery.

The study was conducted by marine zoologists at Oregon State University and published this week in a professional journal, the Proceedings of the National Academy of Sciences. It was done on coral reefs in the Bahamas, which allowed the type of experimental manipulations that are usually impossible to do in a marine ecosystem.


"The research showed that all fish species within a food web are connected with one another, and the removal of any one species can cause whole populations to break down," said Mark Hixon, an OSU professor of zoology. "This is especially true when you take away the predatory species, which are a key to the natural balance and health of marine ecosystems." The study is particularly relevant to the global problems now being experienced in many commercial fisheries, Hixon said, because many of the fish species most commonly targeted by fisheries are marine predators.

In particular, this study confirmed the operation in a marine ecosystem of a concept that has long been recognized with animals in terrestrial ecosystems – that of "density dependent mortality." Basically, when a species population size is low, the mortality rate will also be low – predators tend to target species that are more abundant. And when a species population is high, the mortality rate will increase, as predators take advantage of the easy availability of food.

Other than the interaction between prey and predator, Hixon said, there is also an important role for competitors – two or more species that fight for the same resources. The competing species have negative effects on each other’s population, and distracted competitors can be more vulnerable to predation.

"This interaction has been known for some time in land ecosystems," Hixon said. "But it’s been much more difficult to demonstrate in the open ocean."

With experimental manipulations on coral reefs in the clear waters of the Bahamas, OSU scientists were able to isolate some reefs from others and selectively remove certain fish, their competitors or predators to observe the effect.

"We found that the removal of any one species can have ramifications for the whole ecosystem," Hixon said. "Without predation, a fish species can increase its population to an unsupportable size. Lacking food, fish become vulnerable to disease, changes in water conditions and ultimate collapse of that species or the whole fishery. Everything is connected to everything else."

In the Pacific Northwest, some of the key predatory species are lingcod, some larger rockfish and other groundfish.

The findings may help explain why some fish populations undergo such dramatic changes either naturally or when pressured by external forces such as fishing, Hixon said. It’s not unusual for fish populations within a certain species and location to vary by as much as 10 to 100 times.

However, when there’s a proper and natural balance between a species, its competitors and its predators, Hixon said, there is much less risk of population collapse or regional extinction.

The study was funded by a 4-year, $400,000 grant from the National Science Foundation, and also the National Undersea Research Program of the U.S. National Oceanic and Atmospheric Administration.

In continuing research, OSU scientists hope to study these processes within the context of marine reserves, and see if the maintenance of balanced and healthy fish populations in such reserves can have a positive influence on the availability of species elsewhere, including those sought in commercial or recreational fisheries outside the reserves.


By David Stauth, 541-737-0787
SOURCE: Mark Hixon, 541-737-5364


Mark Hixon | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>