Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic diversity necessary for optimal ecosystem functioning, according to UGA research

20.08.2002


Though it has long been known by scientists that an ecosystem needs different kinds of plants and animals for optimal functioning, University of Georgia scientists have recently found that the genetic diversity of species within a habitat also affects ecosystem processes.



"It is not just the quantity of species diversity that matters, it is also the quality of genetic diversity," said lead author Mike Madritch, an ecology doctoral student at UGA. Madritch studied carbon and nitrogen fluxes during decomposition of leaf litter and found a significant link between nutrient output and the genetic variation of the leaves.

The study was co-authored with Mark Hunter, associate professor of ecology at UGA, and published this week in the Ecological Society of America’s journal, Ecology. The research was funded by the National Science Foundation and the Andrew W. Mellon Foundation.


The study was conducted on a turkey oak (Quercus laevis Walter) sandhills community at UGA’s Savannah River Ecology Laboratory in Aiken, SC where Madritch and Hunter analyzed the decomposition of nine different single tree litter treatments and one mixed treatment that contained litter from all nine trees of the same species. They found a marked difference in the amount of carbon and nitrogen released based upon the parentage of the leaf litter.

"Diversity matters," said Madritch. "Our study shows that bringing a species population back from the brink of extinction to its original levels would not have the same effect on the environment as if the species never faced being endangered in the first place. When you build back from an endangered population, you necessarily are building from a limited gene pool, and we found that the variety in the genetic make-up matters to the system."

The researchers found not only that a reduction in genetic biodiversity affects the way an ecosystem functions, but they also found that a loss in genetic diversity reduces the predictability of how an ecosystem will work.

Single tree litter treatments did not always yield less carbon and nitrogen than the mixed treatment. Sometimes the single tree treatments produced more nutrients and sometimes they produced less, but the researchers say the nutrients were always significantly different than the mixed-litter treatment.

"The alarming part of this discovery is that you cannot predict the effect that reduced genetic biodiversity will have on an ecosystem," said Hunter. "Therefore, deforestation is like playing Russian roulette with our future. We know that relying upon fewer trees to recycle nutrients will make a difference, but we don’t know what kind of difference. It’s a chance I don’t think is worth taking."

Madritch and Hunter are convinced that conserving genetic diversity within a species is as important as conserving species diversity for maintaining ecosystem functions. "This research is especially important in the current mass extinction period," said Hunter. "Plants capture the energy that drives the planet. By continuing to destroy plant habitats, we reduce the available gene pool. In the end it could harm the biggest ecosystem of all: planet Earth."

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>