Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plant detectives seek sources of invasive trees


Tamarix invading the southwest

Like modern day Sherlock Holmeses, plant biologists at Washington University in St. Louis have donned their deerstalkers to get to the bottom of some botanical mysteries.
Barbara A. Schaal, Ph.D., Washington University professor of biology and her graduate students use DNA sequences to reveal information on historical events. Schaal has traced the origins of cassava using molecular techniques, and now is using systematics and phylogeography to document the role of hybridization and introgression in the evolution of Phlox species and to trace the Eurasian source of invasive Tamarix species in the United States.

The Tamarix species, commonly called saltcedar, are environmental threats that have invaded the arid southwest and are contributing to the drying up of creeks and streams in that water-threatened area. Over a million acres are now infested with saltcedar monocultures along streams and riverbeds. The salt cedars’ long taproots suck up salty ground water and drop salt-crusted leaves on the soil surface. This makes it almost impossible for native plants to take root. The loss of native plants also decreases the insect and bird biodiversity.

Schaal’s graduate student, John Gaskin, has used DNA sequences to identify which species are here and to document hybridization. Their DNA analyses also help them pinpoint where the plants may have originated in Eurasia. Earlier USDA studies show that an Arizona saltcedar will not be eaten by certain Asian insects known to like saltcedars; these insects, instead, prefer plants that grow in Texas or New Mexico. So, there are different kinds of the plants in different areas.

So far Schaal and Gaskin have found that the most common invasive here is a hybrid of two species that do not grow in the same areas of Asia, and thus is a novel plant genotype. These results will help USDA biological control researchers determine which insects to import in the future to help control the invasion, but caution that any novel hybrid plants may prove to be unpalatable to species-specific insects, since they did not evolve with them.

Schall and Gaskin published their results in the Proceedings of the National Academy of Sciences (PNAS), the week of Aug. 12-16, 2002.

Tamarix is the second most evasive plant in the United States. Purple loosestrife (Lythrum salicaria) is number one and a big problem in northern areas. Invasive plants are second only to habitat loss in contributing to loss of biodiversity.


Hybrid Plants Run Rampant

Previously undetected hybrids are a major component of a non-native plant invasion that has taken over more than 600,000 hectares of U.S. wetlands and riparian areas, report the authors of article #4032. Eurasian Tamarix, commonly known as saltcedar or tamarisk, was first introduced to the United States in the 1800s for the purposes of shade and erosion control. Since then, according to a genetic analysis performed by authors John Gaskin and Barbara Schaal, two of the introduced species of Tamarix have interbred to create a hybrid that may be resistant to biological control agents currently under development. In their native environments, the two species rarely overlap--T. ramosissima was found almost exclusively west of central China, while T. chinensis was found primarily to the east--but in the U.S., the two species have been placed in close proximity to each other and given ample opportunity to hybridize. By analyzing genetic variations among more than 250 plants gathered in the U.S. and Eurasia, the authors found that overall diversity is higher in Eurasia, but the proportion of novel hybrids is higher in the U.S. In fact, the most common plant in the U.S. invasion is a hybrid of T. ramosissima and T. chinensis. The authors also found that a small region within the Republic of Georgia and Azerbaijan contains all of the genetic variation of T. ramosissima common to both the U.S. and Eurasia, a discovery that could aid in the development of effective

biological controls. The authors note that Tamarix continues to spread across the U.S. at a rate of about 18,000 hectares per year, displacing other species and altering the hydrology of watercourses in fragile, arid environments.

"Hybrid Tamarix widespread in U.S. invasion and undetected in native Asian range," by John F. Gaskin and Barbara A. Schaal

Links: For more information on Tamarix or the current biological control project, see and

Missouri Exotic Invasive Plant Page:
Gaskin website:

Tony Fitzpatrick | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>