Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medicated ecosystems: human drugs alter key aquatic organism

07.08.2002


The overuse of antibiotics not only leads to more resistant strains of infection, but, according to new research from the University of Wisconsin-Madison, antibiotics also may be adversely affecting zooplankton, tiny organisms that underpin the health of all freshwater ecosystems.



In the last decade, European and American researchers have found more evidence that lakes and streams are tainted by common drugs, ranging from caffeine to anticancer agents.

This pollution, says Colleen Flaherty, a UW-Madison zoologist, has direct ties to humans, either through the improper disposal of unwanted pharmaceuticals or through the ingestion of the drugs.


"Up to 80 percent of drugs taken by humans and domesticated animals can be excreted in their biologically active form," explains Flaherty. This means that the antibiotics, antidepressants and anti-inflammatory pills we either take or throw out can eventually end up polluting the environment and harming the organisms that live in it.

Says UW-Madison zoologist Stanley Dodson, who studies freshwater ecology, "Pharmaceuticals can be detected in many surface water streams and lakes, yet we know little about how these strongly biologically active chemicals affect the ecology of aquatic organisms."

Flaherty will present findings from her study -- one of the first to document the effects of commonly-prescribed drugs on Daphnia, a zooplankton integral to freshwater ecosystems -- Thursday, Aug. 7, at the annual meeting of the Ecological Society of America.

"Daphnia play a key ecological role in freshwater sources," says Flaherty. "They are an intermediate organism in these ecosystems -- they eat the algae and are eaten by the fish. If something happens to Daphnia, it could affect both the algae and the fish populations."

To determine the influence of pharmaceuticals on this key freshwater species, Flaherty tested Daphnia’s biological response to commonly prescribed drugs that have been found in European and U.S. waters; the drugs include a cholesterol-lowering one (clofibric acid), an antidepressant (fluoxetine) and five antibiotics.

Flaherty performed short- and long-term studies to find out what happens to a female Daphnia and her offspring when exposed to a particular drug. Flaherty measured the survival, growth, number and sex of each female’s offspring. While the short-term studies looked at a single brood, the long-term ones examined all the offspring the female produced during her life span (about 30 days).

The effects Flaherty found varied. In the short-term studies, the antibiotics and cholesterol drug at concentrations of just 10 parts per billion -- an environmentally relevant concentration, says Flaherty -- appear to stunt growth and result in more male offspring.

In the long-term studies, these differences were diminished: offspring exposed to the antibiotics tended to have longer lifespans; those exposed to the cholesterol-lowering drug showed no apparent effects. While the other drug, an antidepressant, produced no differences in the shorter trials, it did result in a greater number of offspring in the longer studies.

"When Daphnia were exposed to a single pharmaceutical throughout their entire lifespan, as in the long-term studies, they seemed to become acclimated to the polluted environment," Flaherty says.

But, as Flaherty points out, Daphnia swim in waters tainted with not just one drug, but many: "Some of these drugs may not have significant effects by themselves," she says, "but, when you combine them in a ’pharmaceutical cocktail,’ the effects can be lethal."

When Flaherty exposed the organisms to a combination of the cholesterol drug and the antidepressant during the short-term studies, she found that the offspring were more likely to be female, have more deformities that hinder swimming and up to a 90 percent mortality rate. Flaherty says, "I never expected that two drugs that had virtually no individual effects could be so lethal when combined."

Because of these findings, Flaherty says that, in order to fully understand the ecological effects of pharmaceuticals or other man-made chemicals on freshwater ecosystems, scientists should look at not just one chemical, but combinations of them.

Emily Carlson (608) 262-9772, emilycarlson@facstaff.wisc.edu


Colleen Flaherty | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>