Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical forests under surveillance

02.08.2002


How can new technologies help to reveal the hidden lives of tropical animals and plants?

Difficult environmental conditions and complex biological interactions make it tough for tropical biologists to understand animal behavior, climate change effects and highly biodiverse plants and forest organisms. On Monday, July 29, 2002, the Smithsonian Tropical Research Institute (STRI) convened a diverse group of rainforest biologists with engineers at the forefront of sensor and communications technologies to brainstorm new ways to apply technology in tropical research and conservation efforts.

According to the symposium organizer, Julio Escobar, President of Centauri Technologies Corporation, field biologists may be unaware of the latest technological innovations as they plan research strategies, or may be unable to afford novel equipment. Furthermore, new technologies designed for commercial purposes may not easily lend themselves to biological applications.



Advanced sensor technologies in concert with modern communications platforms will be vastly more useful to researchers if they are intentionally designed to monitor an incredibly complex tropical environment where a huge variety of organisms interact.

Elusive ocelots, bats flying through underbrush and male beetles who secretly manipulate their mates were the study subjects mentioned as biologists came up with a "wish list" of questions to be answered if the appropriate technology were available. Roland Kays, Curator of Mammals at the New York State Museum commented that the first challenge to an understanding of animal behavior in the tropics is simply the ability to find the same animal several times in order to make multiple observations. With Martin Wikelski, Assistant Professor of Zoology at Princeton University, Kays will implement an automated telemetry system on Barro Colorado Island to locate animals via an array of radio towers designed to replace chasing individually radio-collared animals through the forest with a hand-held antenna with the ability to locate an animal on a palm-sized computer, or to be paged when an animal leaves the reserve(http://www.princeton.edu/~wikelski/research).

High-quality sound recordings, automated analyses of sound sequences and radiotransmitters with ultrasound sensors were on the wish list of Elisabeth Kalko, Staff Scientist at STRI and the University of Ulm who studies bats: nocturnal, highly mobile inhabitants of inaccessible, obstacle-rich habitats. Bats play an extremely important role in seed dispersal, pollination and insect predation in tropical forests and an understanding of their community structure and behavior is essential to conservation efforts.

In order to survive in nature animals must reproduce, but their secret sex lives may be nearly impossible for biologists to observe. William Eberhard, from STRI and the University of Costa Rica, currently relies on a microscope and a notebook for most of his research, but dreams of tiny surveillance cameras, chemical sensors and x-ray like technology to enable him to watch the intimate interactions of spiders, beetles, birds and bees.

Conservation of the Amazon basin, where 40% of the world’s remaining rainforest is under immediate threat of destruction, has benefitted from initial efforts to monitor land use via remote sensing devices and satellite technology.

However, the current challenge, according to William Laurance, STRI staff and Biological Dynamics of Forest Fragments Project, is to link information available at very large scales with local land-use information. Current technologies still cannot accurately discriminate small clearings caused by logging in Brazil where the government estimates that over 80% of timber harvest operations are illegal.

What technologies could be immediately put into place to address urgent biological questions and what will be coming down the line? Deborah Estrin, Professor of Computer Science at UCLA and Director of the new NSF-funded Center for Embedded Networked Sensing designs systems to observe phenomena that were previously unobservable(http://www.cs.ucla.edu/csd/CENS.html). She discussed a system at the James Reserve, of tiny environmental sensors in place which continuously monitor micro-climatic factors. Communication of data consumes the majority of the energy needed to run these systems, so systems designed to eliminate unnecessary information don’t waste energy communicating these to users. Minimizing the weight of the power source to run a sensor is critical. Monitoring small-bodied animals like birds, bats and insects is limited by the animal’s ability to carry even the lightest batteries.

Vertically oriented radar automatically monitors the density and distribution of insects flying at altitude and has been used by Joseph Riley, who headed the Natural Resources Institute’s Radar Unit, to monitor insect migration and behavior in the British Isles.

While cluttered tropical environments may be less amenable to the use of traditional radar, new transponders allow radar to detect signals reflected off of small targets flying in front of a cluttered background like the tropical forest understory.

Peter Mansfield, of Mansfield Technical Consulting explained the ins and outs of directional sensors and range sensors (GPS, RADAR, LIDAR) as well as proximity detectors, accelerometers and micro electronic mechanical systems (MEMS), their limitations and their capabilities for use in biological applications.

Charles Perkins, Nokia Corporation, commented on the use of Ad Hoc Networks as platforms to provide biologists with immediate access to visual and audio information about their research subjects. "Consider how much information we could gain from a set of cell phones mounted on trees, which automatically call in relevant data to researchers as it becomes available, " commented Frank Levinson, Finisar Corporation founder.

Micromachining technologies have tremendously reduced the size and cost of sensors combining small mechanical components with electronic components, and making it much more feasible and cost-effective to monitor wilderness habitats.

Jack Judy, Assistant Professor of Electrical Engineering at the University of California, Los Angeles discussed the development of a variety of micro-electromechanical systems (MEMS), including electrical noses and other chemical sensors to monitor evironmental contamination.

Finally, Dennis Shaw, Chief Information Officer at the Smithsonian Institution, discussed the current capability of telecommunications systems at the Smithsonian Tropical Research Institute to support scientific research. The Smithsonian Institution has placed new emphasis on updating computing and telephone systems to connect remote field sites and facilitate access to the most recent data generated by staff scientists and guest researchers. STRI us committed to pushing the development of new technologies for improving understanding and conservation of tropical organisms and communities.

Workshop participants continued their informal discussions the following day on Barro Colorado Island, STRI’s original field station in Panama and "the best studied piece of tropical real estate in the New World," where they experienced tropical forest conditions first hand.

Julio Escobar | EurekAlert!
Further information:
http://www.si.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>