Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical forests under surveillance

02.08.2002


How can new technologies help to reveal the hidden lives of tropical animals and plants?

Difficult environmental conditions and complex biological interactions make it tough for tropical biologists to understand animal behavior, climate change effects and highly biodiverse plants and forest organisms. On Monday, July 29, 2002, the Smithsonian Tropical Research Institute (STRI) convened a diverse group of rainforest biologists with engineers at the forefront of sensor and communications technologies to brainstorm new ways to apply technology in tropical research and conservation efforts.

According to the symposium organizer, Julio Escobar, President of Centauri Technologies Corporation, field biologists may be unaware of the latest technological innovations as they plan research strategies, or may be unable to afford novel equipment. Furthermore, new technologies designed for commercial purposes may not easily lend themselves to biological applications.



Advanced sensor technologies in concert with modern communications platforms will be vastly more useful to researchers if they are intentionally designed to monitor an incredibly complex tropical environment where a huge variety of organisms interact.

Elusive ocelots, bats flying through underbrush and male beetles who secretly manipulate their mates were the study subjects mentioned as biologists came up with a "wish list" of questions to be answered if the appropriate technology were available. Roland Kays, Curator of Mammals at the New York State Museum commented that the first challenge to an understanding of animal behavior in the tropics is simply the ability to find the same animal several times in order to make multiple observations. With Martin Wikelski, Assistant Professor of Zoology at Princeton University, Kays will implement an automated telemetry system on Barro Colorado Island to locate animals via an array of radio towers designed to replace chasing individually radio-collared animals through the forest with a hand-held antenna with the ability to locate an animal on a palm-sized computer, or to be paged when an animal leaves the reserve(http://www.princeton.edu/~wikelski/research).

High-quality sound recordings, automated analyses of sound sequences and radiotransmitters with ultrasound sensors were on the wish list of Elisabeth Kalko, Staff Scientist at STRI and the University of Ulm who studies bats: nocturnal, highly mobile inhabitants of inaccessible, obstacle-rich habitats. Bats play an extremely important role in seed dispersal, pollination and insect predation in tropical forests and an understanding of their community structure and behavior is essential to conservation efforts.

In order to survive in nature animals must reproduce, but their secret sex lives may be nearly impossible for biologists to observe. William Eberhard, from STRI and the University of Costa Rica, currently relies on a microscope and a notebook for most of his research, but dreams of tiny surveillance cameras, chemical sensors and x-ray like technology to enable him to watch the intimate interactions of spiders, beetles, birds and bees.

Conservation of the Amazon basin, where 40% of the world’s remaining rainforest is under immediate threat of destruction, has benefitted from initial efforts to monitor land use via remote sensing devices and satellite technology.

However, the current challenge, according to William Laurance, STRI staff and Biological Dynamics of Forest Fragments Project, is to link information available at very large scales with local land-use information. Current technologies still cannot accurately discriminate small clearings caused by logging in Brazil where the government estimates that over 80% of timber harvest operations are illegal.

What technologies could be immediately put into place to address urgent biological questions and what will be coming down the line? Deborah Estrin, Professor of Computer Science at UCLA and Director of the new NSF-funded Center for Embedded Networked Sensing designs systems to observe phenomena that were previously unobservable(http://www.cs.ucla.edu/csd/CENS.html). She discussed a system at the James Reserve, of tiny environmental sensors in place which continuously monitor micro-climatic factors. Communication of data consumes the majority of the energy needed to run these systems, so systems designed to eliminate unnecessary information don’t waste energy communicating these to users. Minimizing the weight of the power source to run a sensor is critical. Monitoring small-bodied animals like birds, bats and insects is limited by the animal’s ability to carry even the lightest batteries.

Vertically oriented radar automatically monitors the density and distribution of insects flying at altitude and has been used by Joseph Riley, who headed the Natural Resources Institute’s Radar Unit, to monitor insect migration and behavior in the British Isles.

While cluttered tropical environments may be less amenable to the use of traditional radar, new transponders allow radar to detect signals reflected off of small targets flying in front of a cluttered background like the tropical forest understory.

Peter Mansfield, of Mansfield Technical Consulting explained the ins and outs of directional sensors and range sensors (GPS, RADAR, LIDAR) as well as proximity detectors, accelerometers and micro electronic mechanical systems (MEMS), their limitations and their capabilities for use in biological applications.

Charles Perkins, Nokia Corporation, commented on the use of Ad Hoc Networks as platforms to provide biologists with immediate access to visual and audio information about their research subjects. "Consider how much information we could gain from a set of cell phones mounted on trees, which automatically call in relevant data to researchers as it becomes available, " commented Frank Levinson, Finisar Corporation founder.

Micromachining technologies have tremendously reduced the size and cost of sensors combining small mechanical components with electronic components, and making it much more feasible and cost-effective to monitor wilderness habitats.

Jack Judy, Assistant Professor of Electrical Engineering at the University of California, Los Angeles discussed the development of a variety of micro-electromechanical systems (MEMS), including electrical noses and other chemical sensors to monitor evironmental contamination.

Finally, Dennis Shaw, Chief Information Officer at the Smithsonian Institution, discussed the current capability of telecommunications systems at the Smithsonian Tropical Research Institute to support scientific research. The Smithsonian Institution has placed new emphasis on updating computing and telephone systems to connect remote field sites and facilitate access to the most recent data generated by staff scientists and guest researchers. STRI us committed to pushing the development of new technologies for improving understanding and conservation of tropical organisms and communities.

Workshop participants continued their informal discussions the following day on Barro Colorado Island, STRI’s original field station in Panama and "the best studied piece of tropical real estate in the New World," where they experienced tropical forest conditions first hand.

Julio Escobar | EurekAlert!
Further information:
http://www.si.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>