Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecology and conservation of fragmented tropical forests

01.08.2002


Panama City, Panama-Today the world’s tropical forests are not only being cleared at an extraordinary rate, they are also increasingly being divided into fragments that can rapidly lose their original rich biodiversity. At the 2002 meetings of the Association for Tropical Biology, hosted by the Smithsonian Tropical Research Institute (STRI), Panama, this conservation crisis was addressed in a symposium bringing together concerned investigators from throughout the tropics.



Organized by William Laurance of STRI and Pierre-Michel Forget of the Museum d’Histoire Naturelle, Paris, the session included 24 presentations that examined the causes, scope, and consequences of fragmentation in studies from 12 countries on five continents. The range of organisms included was equally broad, extending from mosses to forest trees, and from dung beetles to lemurs. The following are a sampling of the results reported at the meeting.

Tom Lovejoy, of H. John Heinz Center for Science, who initiated the first large scale experimental studies of tropical forest fragmentation in the Brazilian Amazon, the Biological Dynamics of Forest Fragments (BDFF) Project, presented an overview of what has been learned so far and suggested directions for the future. He pointed out that although species declines small fragments may be rapid, larger fragments of 100 hectares or more retain their diversity much longer, enabling us to take steps towards restoration before losses become irreversible.


William Laurance described the rapid changes in forest composition that take place in small forest fragments, based on data collected by the BDFF over the past 22 years. These changes are driven by greatly accelerated tree mortality near forest edges, causing species typical of old growth to decline and disturbance-tolerant species to increase. As a result, the composition of different fragments becomes more similar over time, causing a loss of tree diversity in the fragments taken as a whole even though the diversity decline in individual fragments is limited.

In contrast, data from a naturally fragmented forest in India showed that fragments serve as reservoirs for tree genetic diversity. Rajani Kanth of the University of Agricultural Sciences, Bangalore, presented work with collaborators B. Tambat, G. Ravikanth, U. Shankaar, and K.N. Ganeshaiah, demonstrating that although individual small fragments of shola forest in the Western Ghat mountains are low in genetic diversity, collectively they contain more diversity than large fragments, emphasizing the value of small fragments for conservation.

Jean Paul Metzger of the Universidade São Paolo, Brazil, reported on studies of the effects of fragment size and connectivity on species survival, community richness, and regeneration processes in the Atlantic forest of Brazil. Detailed surveys of trees, vertebrates, and butterflies showed fragmentation affected species richness and diversity for all study groups, and also affected important ecological processes, but some of these effects were unexpected. For example, tree communities in small isolated fragments turned out to be richer in than those in larger connected ones.

Surrounding land use can have important effects on species persistence in fragmented landscapes. Luis Miguel Renjifo of the Insituto Alexander von Humboldt, Colombia, compared the relative abundances of 113 species of birds in forest fragments surrounded by either pastures or exotic tree plantations, to those in plots surrounded by continuous forest. More than 65% of the species showed significant differences in abundance depending on the surrounding type of land use. Some species persisted better in patches surrounded by plantations than in those surrounded by pasture, suggesting that such a land use could be used as a management tool as a complement to habitat protection and restoration.

Future climate change due to global warming may have catastrophic effects on species restricted to fragmented habitats. Steve Williams of James Cook University, Australia, presented an analysis of the potential effects of climate change on the vertebrate fauna of the wet tropics of Australia, especially the 72 species endemic to the region. While a conservative scenario of a 1E C temperature rise would result in the direct loss of only one endemic, a perhaps more likely rise of 3.5E could cause the loss of 50% of the endemic fauna.

William F. Laurance | EurekAlert!
Further information:
http://www.si.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>