Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A dash of lime – a new twist that may cut Co2 levels back to pre-industrial levels

21.07.2008
Scientists say they have found a workable way of reducing CO2 levels in the atmosphere by adding lime to seawater. And they think it has the potential to dramatically reverse CO2 accumulation in the atmosphere, reports Cath O’Driscoll in SCI’s Chemistry & Industry magazine published today.

Shell is so impressed with the new approach that it is funding an investigation into its economic feasibility. ‘We think it’s a promising idea,’ says Shell’s Gilles Bertherin, a coordinator on the project.

‘There are potentially huge environmental benefits from addressing climate change – and adding calcium hydroxide to seawater will also mitigate the effects of ocean acidification, so it should have a positive impact on the marine environment.’

Adding lime to seawater increases alkalinity, boosting seawater’s ability to absorb CO2 from air and reducing the tendency to release it back again.

However, the idea, which has been bandied about for years, was thought unworkable because of the expense of obtaining lime from limestone and the amount of CO2 released in the process.

Tim Kruger, a management consultant at London firm Corven is the brains behind the plan to resurrect the lime process. He argues that it could be made workable by locating it in regions that have a combination of low-cost ‘stranded’ energy considered too remote to be economically viable to exploit – like flared natural gas or solar energy in deserts – and that are rich in limestone, making it feasible for calcination to take place on site.

Kruger says: ‘There are many such places – for example, Australia’s Nullarbor Plain would be a prime location for this process, as it has 10 000km3 of limestone and soaks up roughly 20MJ/m2 of solar irradiation every day.’

The process of making lime generates CO2, but adding the lime to seawater absorbs almost twice as much CO2. The overall process is therefore ‘carbon negative’.

‘This process has the potential to reverse the accumulation of CO2 in the atmosphere. It would be possible to reduce CO2 to pre-industrial levels,’ Kruger says.

And Professor Klaus Lackner, a researcher in the field from Columbia University, says: ‘The theoretical CO2 balance is roughly right…it is certainly worth thinking through carefully.’

The oceans are already the world’s largest carbon sink, absorbing 2bn tonnes of carbon every year. Increasing absorption ability by just a few percent could dramatically increase CO2 uptake from the atmosphere.

This project is being developed in an open source manner. To find out more, please go to www.cquestrate.com, a new website, launched today.

For a full copy of the article, contact: Meral Nugent,
Press and Public Relations Manager,
T: +44 (0)20 7598 1533, F: +44 (0) 20 7598 1545, Mob: 07931 315077
E: meral.nugent@soci.org

Meral Nugent | alfa
Further information:
http://www.soci.org

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>