Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollination Habits of Endangered Rice Revealed to Help Preservation

17.07.2008
A type of wild rice that only grows in a small stretch of the San Marcos River is likely so rare because it plays the sexual reproduction game poorly, a study led by the Lady Bird Johnson Wildflower Center at The University of Texas at Austin has revealed.

The first study of breeding habits of this endangered, aquatic grass (Zizania texana) found that the pollen of Texas wild-rice can only travel about 30 inches away from a parent plant. If pollen doesn’t land on a receptive female flower within that distance, no seeds will be produced. No seeds means no new plants to replenish a population that faces other survival threats.

“It would be great to introduce more of these plants into the San Marcos River so that we can build up its population, said Flo Oxley, conservation director at the Wildflower Center, and lead author of the study.

“This information will be useful when reintroduction efforts begin, because we now know that lots of new plants must be planted close together in order for seeds to be produced.”

The findings were published in June in The Southwestern Naturalist journal of the Southwestern Association of Naturalists, and shared with staff at the U.S. Fish and Wildlife Service and the Texas Parks and Wildlife Department.

The U.S. Fish and Wildlife Service is the principal federal agency responsible for federally listed species conservation. Texas has about 25 percent of the plant biodiversity nationally, including 23 endangered and five threatened plant species.

Texas wild-rice prefers the clean, clear water of the San Marcos River and is not found anywhere else. The plant spends most of its life submerged, emerging only to flower. Recreation on the river can stir up sediments that prevent sunlight from reaching the plants, and swimmers, tubers and canoers often submerge the plants’ flowers so they can’t pollinate. This foot traffic isn’t expected to go away soon, and the flow of underground water into springs that feed the river is also decreasing as the Central Texas population expands and drinking water needs increase.

“Nobody intends to shut down access to the river because of these plants” Oxley said, “and I’ve been surprised at how respectful of the plant people are when they learn that it is an endangered species that grows only in the San Marcos River and nowhere else in the world. Texans are very proud and protective of their natural history, and I believe they will take care of Texas wild-rice if we just let them know about it.”

It doesn’t hurt, she added, that Texas wild-rice serves as home for tiny invertebrates that have nasty feeding habits.

“People who swim through Texas wild-rice risk picking up these aquatic hitchhikers and may end up with itchy behinds for their efforts,” she said.

Texas wild-rice is a food source and home for endangered fish called fountain darters, and is a cousin to several rice species cultivated for food purposes. But it is among more than 200 plant species of concern in Texas whose fundamental value isn’t understood because so little information has been available to guide conservation or other decisions.

“We don’t know what overall purpose this plant serves in the ecosystem, and we don’t know what’s going to happen if this plant goes away," Oxley said.

Barbra Rodriguez | Newswise Science News
Further information:
http://www.utexas.edu/opa/
http://www.wildflower.org

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>