Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying areas at risk for arsenic contamination

14.07.2008
The contamination of groundwater with arsenic poses a risk to the health of millions of people, especially in the densely populated river deltas of Southeast Asia. To date, no method has been available for identifying high-risk areas without conducting costly sampling campaigns.

Now, Eawag has developed a model that allows vulnerable areas to be pinpointed using existing data on geology and soil properties. This has also enabled the researchers to detect high-risk areas in regions where groundwater studies had not previously been carried out, such as in Myanmar and on Sumatra.

Worldwide, more than 100 million people are exposed to excessive amounts of arsenic in drinking water. Arsenic is a geogenic contaminant – deriving from natural sources – which is dissolved in groundwater. In many areas, the problem is recognized, but because surface waters are polluted new wells are continually established, often without testing the pumped water for arsenic.

Making use of available data

In an article published in the journal Nature Geoscience, Eawag researchers have now described a method that allows high-risk areas to be identified relatively easily, without the need for expensive and time-consuming groundwater analysis. For this purpose, the team, led by geologist Lenny Winkel and environmental chemist Michael Berg, compiled existing geological data from Bangladesh, Myanmar, Thailand, Cambodia, Vietnam and Sumatra (Indonesia) to produce a uniformly classified map. The data related only to surface sediments and soil properties; surprisingly, this combination of data permits sufficiently accurate conclusions to be drawn concerning chemical and physical conditions in groundwater.

The scientists then studied the statistical relations between 30 surface parameters (geological, hydrological and climate data) and arsenic concentrations, and finally incorporated the eight most relevant variables into a logistic regression model. In particular, young river deposits with organic rich sediments proved to be indicators of groundwater arsenic contamination. This is apparent from the maps in which the probabilities calculated for elevated arsenic concentrations are presented in a graphical form.

Supporting governments and aid agencies

Verification of the model using more than 1750 available groundwater data points from the Bengal, Mekong and Red River deltas showed that the predictions accorded well with reality. However, in areas assigned a low risk by the model, the risk cannot be assumed to be zero. “There is no such thing,” as Michael Berg points out. The environmental chemist adds that, ultimately, even a refined model, e.g. including more data from deeper rock strata, could not serve as a substitute for analysis of water samples. “But thanks to the maps, governments, local authorities or aid agencies can tell very quickly where it might be problematic to sink a well.”

New high-risk areas detected on Sumatra and in Myanmar

The latest findings from Southeast Asia are part of the Water Resource Quality (WRQ) project, an Eawag research programme studying the occurrence of geogenic contaminants in groundwater worldwide. As well as arsenic, these include fluoride, selenium and uranium. In parallel, methods are being developed to allow the populations affected to treat contaminated water, using appropriate technologies. To date, work has been carried out on a very coarse scale, but this has now been successfully refined (up to 10x10 km) thanks to the project in Southeast Asia.

The new model is of particular interest for regions where no groundwater measurement data are yet available. Accordingly, the Swiss aquatic research team applied the model to the Indonesian island of Sumatra, where an area covering 100,000 km2 on the eastern coast was found to be at high risk for arsenic contamination. The researchers subsequently used about 100 groundwater samples to verify the probabilities predicted by the model for a region on the border between a low- and a high-risk area.

Once again, the results of analyses were found to agree well with the predictions: 94% of the wells in the low-risk area showed arsenic concentrations below 10 µg/L. The maps also indicate an increased risk of elevated arsenic concentrations in groundwater in the Irrawaddy delta (Myanmar) and along the Chao Phraya river north of Bangkok (Thailand) – both areas where the risk had not previously been recognized.

Andri Bryner | alfa
Further information:
http://www.eawag.ch
http://www.wrq.eawag.ch

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>