Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying areas at risk for arsenic contamination

14.07.2008
The contamination of groundwater with arsenic poses a risk to the health of millions of people, especially in the densely populated river deltas of Southeast Asia. To date, no method has been available for identifying high-risk areas without conducting costly sampling campaigns.

Now, Eawag has developed a model that allows vulnerable areas to be pinpointed using existing data on geology and soil properties. This has also enabled the researchers to detect high-risk areas in regions where groundwater studies had not previously been carried out, such as in Myanmar and on Sumatra.

Worldwide, more than 100 million people are exposed to excessive amounts of arsenic in drinking water. Arsenic is a geogenic contaminant – deriving from natural sources – which is dissolved in groundwater. In many areas, the problem is recognized, but because surface waters are polluted new wells are continually established, often without testing the pumped water for arsenic.

Making use of available data

In an article published in the journal Nature Geoscience, Eawag researchers have now described a method that allows high-risk areas to be identified relatively easily, without the need for expensive and time-consuming groundwater analysis. For this purpose, the team, led by geologist Lenny Winkel and environmental chemist Michael Berg, compiled existing geological data from Bangladesh, Myanmar, Thailand, Cambodia, Vietnam and Sumatra (Indonesia) to produce a uniformly classified map. The data related only to surface sediments and soil properties; surprisingly, this combination of data permits sufficiently accurate conclusions to be drawn concerning chemical and physical conditions in groundwater.

The scientists then studied the statistical relations between 30 surface parameters (geological, hydrological and climate data) and arsenic concentrations, and finally incorporated the eight most relevant variables into a logistic regression model. In particular, young river deposits with organic rich sediments proved to be indicators of groundwater arsenic contamination. This is apparent from the maps in which the probabilities calculated for elevated arsenic concentrations are presented in a graphical form.

Supporting governments and aid agencies

Verification of the model using more than 1750 available groundwater data points from the Bengal, Mekong and Red River deltas showed that the predictions accorded well with reality. However, in areas assigned a low risk by the model, the risk cannot be assumed to be zero. “There is no such thing,” as Michael Berg points out. The environmental chemist adds that, ultimately, even a refined model, e.g. including more data from deeper rock strata, could not serve as a substitute for analysis of water samples. “But thanks to the maps, governments, local authorities or aid agencies can tell very quickly where it might be problematic to sink a well.”

New high-risk areas detected on Sumatra and in Myanmar

The latest findings from Southeast Asia are part of the Water Resource Quality (WRQ) project, an Eawag research programme studying the occurrence of geogenic contaminants in groundwater worldwide. As well as arsenic, these include fluoride, selenium and uranium. In parallel, methods are being developed to allow the populations affected to treat contaminated water, using appropriate technologies. To date, work has been carried out on a very coarse scale, but this has now been successfully refined (up to 10x10 km) thanks to the project in Southeast Asia.

The new model is of particular interest for regions where no groundwater measurement data are yet available. Accordingly, the Swiss aquatic research team applied the model to the Indonesian island of Sumatra, where an area covering 100,000 km2 on the eastern coast was found to be at high risk for arsenic contamination. The researchers subsequently used about 100 groundwater samples to verify the probabilities predicted by the model for a region on the border between a low- and a high-risk area.

Once again, the results of analyses were found to agree well with the predictions: 94% of the wells in the low-risk area showed arsenic concentrations below 10 µg/L. The maps also indicate an increased risk of elevated arsenic concentrations in groundwater in the Irrawaddy delta (Myanmar) and along the Chao Phraya river north of Bangkok (Thailand) – both areas where the risk had not previously been recognized.

Andri Bryner | alfa
Further information:
http://www.eawag.ch
http://www.wrq.eawag.ch

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>