Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acidifying oceans add urgency to CO2 cuts

07.07.2008
It's not just about climate change anymore. Besides loading the atmosphere with heat-trapping greenhouse gases, human emissions of carbon dioxide have also begun to alter the chemistry of the ocean—often called the cradle of life on Earth.

The ecological and economic consequences are difficult to predict but possibly calamitous, warn a team of chemical oceanographers in the July 4 issue of Science, and halting the changes already underway will likely require even steeper cuts in carbon emissions than those currently proposed to curb climate change.

Ken Caldeira of the Carnegie Institution's Department of Global Ecology, writing with lead author Richard Zeebe of the University of Hawaii and two co-authors*, note that the oceans have absorbed about 40% of the carbon dioxide (CO2) emitted by humans over the past two centuries. This has slowed global warming, but at a serious cost: the extra carbon dioxide has caused the ocean's average surface pH (a measure of water's acidity) to shift by about 0.1 unit from pre-industrial levels. Depending on the rate and magnitude of future emissions, the ocean's pH could drop by as much as 0.35 units by the mid-21st century.

This acidification can damage marine organisms. Experiments have shown that changes of as little as 0.2-0.3 units can hamper the ability of key marine organisms such as corals and some plankton to calcify their skeletons, which are built from pH-sensitive carbonate minerals. Large areas of the ocean are in danger of exceeding these levels of pH change by mid-century, including reef habitats such as Australia's Great Barrier Reef.

Most marine organisms live in the ocean's sunlit surface waters, which are also the waters most vulnerable to CO2-induced acidification over the next century as emissions continue. To prevent the pH of surface waters from declining more than 0.2 units, the current limit set by the U.S. Environmental Protection Agency in 1976, carbon dioxide emissions would have to be reduced immediately.

"In contrast to climate model predictions, such future ocean chemistry projections are largely model-independent on a time scale of a few centuries," the authors write, "mainly because the chemistry of CO2 in seawater is well known and changes in surface ocean carbonate chemistry closely track changes in atmospheric CO2."

Although the ocean's chemical response to higher carbon dioxide levels is relatively predictable, the biological response is more uncertain. The ocean's pH and carbonate chemistry has been remarkably stable for millions of years—much more stable than temperature.

"We know that ocean acidification will damage corals and other organisms, but there's just no experimental data on how most species might be affected," says Caldeira. "Most experiments have been done in the lab with just a few individuals. While the results are alarming, it's nearly impossible to predict how this unprecedented acidification will affect entire ecosystems." Reduced calcification will surely hurt shellfish such as oysters and mussels, with big effects on commercial fisheries. Other organisms may flourish in the new conditions, but this may include undesirable "weedy" species or disease organisms.

Though most of the scientific and public focus has been on the climate impacts of human carbon emissions, ocean acidification is as imminent and potentially severe a crisis, the authors argue.

"We need to consider ocean chemistry effects, and not just the climate effects, of CO2 emissions. That means we need to work much harder to decrease CO2 emissions," says Caldeira. "While a doubling of atmospheric CO2 may seem a realistic target for climate goals, such a level may mean the end of coral reefs and other valuable marine resources."

Ken Caldeira | EurekAlert!
Further information:
http://www.stanford.edu
http://www.CIW.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>