Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acidifying oceans add urgency to CO2 cuts

07.07.2008
It's not just about climate change anymore. Besides loading the atmosphere with heat-trapping greenhouse gases, human emissions of carbon dioxide have also begun to alter the chemistry of the ocean—often called the cradle of life on Earth.

The ecological and economic consequences are difficult to predict but possibly calamitous, warn a team of chemical oceanographers in the July 4 issue of Science, and halting the changes already underway will likely require even steeper cuts in carbon emissions than those currently proposed to curb climate change.

Ken Caldeira of the Carnegie Institution's Department of Global Ecology, writing with lead author Richard Zeebe of the University of Hawaii and two co-authors*, note that the oceans have absorbed about 40% of the carbon dioxide (CO2) emitted by humans over the past two centuries. This has slowed global warming, but at a serious cost: the extra carbon dioxide has caused the ocean's average surface pH (a measure of water's acidity) to shift by about 0.1 unit from pre-industrial levels. Depending on the rate and magnitude of future emissions, the ocean's pH could drop by as much as 0.35 units by the mid-21st century.

This acidification can damage marine organisms. Experiments have shown that changes of as little as 0.2-0.3 units can hamper the ability of key marine organisms such as corals and some plankton to calcify their skeletons, which are built from pH-sensitive carbonate minerals. Large areas of the ocean are in danger of exceeding these levels of pH change by mid-century, including reef habitats such as Australia's Great Barrier Reef.

Most marine organisms live in the ocean's sunlit surface waters, which are also the waters most vulnerable to CO2-induced acidification over the next century as emissions continue. To prevent the pH of surface waters from declining more than 0.2 units, the current limit set by the U.S. Environmental Protection Agency in 1976, carbon dioxide emissions would have to be reduced immediately.

"In contrast to climate model predictions, such future ocean chemistry projections are largely model-independent on a time scale of a few centuries," the authors write, "mainly because the chemistry of CO2 in seawater is well known and changes in surface ocean carbonate chemistry closely track changes in atmospheric CO2."

Although the ocean's chemical response to higher carbon dioxide levels is relatively predictable, the biological response is more uncertain. The ocean's pH and carbonate chemistry has been remarkably stable for millions of years—much more stable than temperature.

"We know that ocean acidification will damage corals and other organisms, but there's just no experimental data on how most species might be affected," says Caldeira. "Most experiments have been done in the lab with just a few individuals. While the results are alarming, it's nearly impossible to predict how this unprecedented acidification will affect entire ecosystems." Reduced calcification will surely hurt shellfish such as oysters and mussels, with big effects on commercial fisheries. Other organisms may flourish in the new conditions, but this may include undesirable "weedy" species or disease organisms.

Though most of the scientific and public focus has been on the climate impacts of human carbon emissions, ocean acidification is as imminent and potentially severe a crisis, the authors argue.

"We need to consider ocean chemistry effects, and not just the climate effects, of CO2 emissions. That means we need to work much harder to decrease CO2 emissions," says Caldeira. "While a doubling of atmospheric CO2 may seem a realistic target for climate goals, such a level may mean the end of coral reefs and other valuable marine resources."

Ken Caldeira | EurekAlert!
Further information:
http://www.stanford.edu
http://www.CIW.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>