Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acidifying oceans add urgency to CO2 cuts

07.07.2008
It's not just about climate change anymore. Besides loading the atmosphere with heat-trapping greenhouse gases, human emissions of carbon dioxide have also begun to alter the chemistry of the ocean—often called the cradle of life on Earth.

The ecological and economic consequences are difficult to predict but possibly calamitous, warn a team of chemical oceanographers in the July 4 issue of Science, and halting the changes already underway will likely require even steeper cuts in carbon emissions than those currently proposed to curb climate change.

Ken Caldeira of the Carnegie Institution's Department of Global Ecology, writing with lead author Richard Zeebe of the University of Hawaii and two co-authors*, note that the oceans have absorbed about 40% of the carbon dioxide (CO2) emitted by humans over the past two centuries. This has slowed global warming, but at a serious cost: the extra carbon dioxide has caused the ocean's average surface pH (a measure of water's acidity) to shift by about 0.1 unit from pre-industrial levels. Depending on the rate and magnitude of future emissions, the ocean's pH could drop by as much as 0.35 units by the mid-21st century.

This acidification can damage marine organisms. Experiments have shown that changes of as little as 0.2-0.3 units can hamper the ability of key marine organisms such as corals and some plankton to calcify their skeletons, which are built from pH-sensitive carbonate minerals. Large areas of the ocean are in danger of exceeding these levels of pH change by mid-century, including reef habitats such as Australia's Great Barrier Reef.

Most marine organisms live in the ocean's sunlit surface waters, which are also the waters most vulnerable to CO2-induced acidification over the next century as emissions continue. To prevent the pH of surface waters from declining more than 0.2 units, the current limit set by the U.S. Environmental Protection Agency in 1976, carbon dioxide emissions would have to be reduced immediately.

"In contrast to climate model predictions, such future ocean chemistry projections are largely model-independent on a time scale of a few centuries," the authors write, "mainly because the chemistry of CO2 in seawater is well known and changes in surface ocean carbonate chemistry closely track changes in atmospheric CO2."

Although the ocean's chemical response to higher carbon dioxide levels is relatively predictable, the biological response is more uncertain. The ocean's pH and carbonate chemistry has been remarkably stable for millions of years—much more stable than temperature.

"We know that ocean acidification will damage corals and other organisms, but there's just no experimental data on how most species might be affected," says Caldeira. "Most experiments have been done in the lab with just a few individuals. While the results are alarming, it's nearly impossible to predict how this unprecedented acidification will affect entire ecosystems." Reduced calcification will surely hurt shellfish such as oysters and mussels, with big effects on commercial fisheries. Other organisms may flourish in the new conditions, but this may include undesirable "weedy" species or disease organisms.

Though most of the scientific and public focus has been on the climate impacts of human carbon emissions, ocean acidification is as imminent and potentially severe a crisis, the authors argue.

"We need to consider ocean chemistry effects, and not just the climate effects, of CO2 emissions. That means we need to work much harder to decrease CO2 emissions," says Caldeira. "While a doubling of atmospheric CO2 may seem a realistic target for climate goals, such a level may mean the end of coral reefs and other valuable marine resources."

Ken Caldeira | EurekAlert!
Further information:
http://www.stanford.edu
http://www.CIW.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>