Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Giving nature a helping hand

Dutch ecologist Marijke van Kuijk has studied the regeneration of the tropical forest in Vietnam.

Abandoned agricultural land does regenerate to tropical forest, but only slowly. Two procedures are used to help nature along: pruning of foliage to free up space for trees and planting the desired tree species. Van Kuijk used the PHOLIAGE model to calculate the appropriate measures.

People in the tropics depend heavily on the products and services the forest supplies. However, the natural regeneration process from agricultural land to forest often stagnates at the scrub stage. Some plants and shrubs grow vigorously and become dominant as a result of which young trees do not receive enough light to grow.

Cutting free
Cutting young trees free generally results in increased growth. Van Kuijk discovered that the response of trees to an opening in the vegetation varied among species. This was related to the tree height, the leaf surface, the dimensions of the crown and the amount of light the trees needed. The ideal size for the opening in the surrounding vegetation varies for each species and depends on the height and density of the vegetation. The PHOLIAGE model can predict tree growth accurately. This makes it possible to determine per tree and per forest the best timing, the best opening and the effects of cutting free.
The PHOLIAGE model can also be used when scheduling the planting of new trees. The success of planting depends on factors such as exposure to light by the existing vegetation, tree species, et cetera. In general, the calculations indicated that shade-tolerant species achieve maximum growth faster (with less intervention) than photophilic species. However, it is not always desirable to open up the vegetation to such an extent that all tree species can reach their maximum growth. That can be at the expense of the existing forest and requires a lot of work. The PHOLIAGE model calculates the amount of growth increase per planting, given a particular opening size.
Secondary forests
Forests start to regenerate after agricultural land has been abandoned. The resulting vegetation is termed “secondary forest”. The vegetation is dominated initially by non-ligneous plants and shrubs, which are replaced within a few years by pioneer trees. After several decades, the pioneers die off, giving the climax species the opportunity to grow and later form a forest. This process, where species replace each other over time, is called “succession” and is the natural process by which a forest regenerates. Often this regeneration process stagnates during the early stages of succession. Non-ligneous plants and shrubs grow vigorously and become dominant, with young trees not receiving sufficient light to grow. What remains is scrubland of little biological, economic, social or cultural value.

David Redeker | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>