Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Oak Trees Help Reduce Global Warming

01.07.2008
MU researchers find submerged trees have potential to be used as carbon credits

The battle to reduce carbon emissions is at the heart of many eco-friendly efforts, and researchers from the University of Missouri have discovered that nature has been lending a hand. Researchers at the Missouri Tree Ring Laboratory in the Department of Forestry discovered that trees submerged in freshwater aquatic systems store carbon for thousands of years, a significantly longer period of time than trees that fall in a forest, thus keeping carbon out of the atmosphere.

“If a tree is submerged in water, its carbon will be stored for an average of 2,000 years,” said Richard Guyette, director of the MU Tree Ring Lab and research associate professor of forestry in the School of Natural Resources in the College of Agriculture, Food and Natural Resources. “If a tree falls in a forest, that number is reduced to an average of 20 years, and in firewood, the carbon is only stored for one year.”

The team studied trees in northern Missouri, a geographically unique area with a high level of riparian forests (forests that have natural water flowing through them). They discovered submerged oak trees that were as old as 14,000 years, potentially some of the oldest discovered in the world. This carbon storage process is not just ancient; it continues even today as additional trees become submerged, according to Guyette.

While a tree is alive, it has a high ability to store carbon, thus keeping it out of the atmosphere. However, as it begins to decay, a tree’s carbon is released back into the atmosphere. Discovering that certain conditions slow this process reveals the importance of proper tree disposal as well as the benefits of riparian forests.

“Carbon plays a huge role in climate change and information about where it goes will be very important someday soon,” said Michael C. Stambaugh, research associate in the MU Department of Forestry. “The goal is to increase our knowledge of the carbon cycle, particularly its exchange between the biosphere (plants) and atmosphere. We need to know where it goes and for how long in order to know how to offset its effects.”

This could be a valuable find for landowners. Although it is not yet common in North America, emissions trading has been gaining popularity in parts of Europe. Also known as cap and trade, emissions trading works to reduce pollution by setting a limit on the amount of pollutants an organization can emit into the air. If they exceed that number, the group is required to obtain carbon credits. One carbon credit equals one metric ton of carbon-dioxide or other equivalent greenhouse gases.

Carbon credits can be purchased in a variety of ways. Such as: planting new trees or harvesting old wood that has stored carbon; collecting methane from landfills; or purchasing credits from other companies who have a carbon surplus by staying below their emission requirements.

This week, the California Air Resources Board announced the consideration of a large plan to fight global warming. The recommendations include reducing emissions, in part by requiring major polluters to trade carbon credits.

“Farmers can sell the carbon they have stored in their trees through a carbon credit stock market,” Guyette said. “Companies that emit excess of carbon would be able to buy carbon credits to offset their pollution.”

The study “The Temporal Distribution and Carbon Storage of Large Oak Wood in Streams and Floodplain Deposits” was published in the journal Ecosystems.

Jennifer Faddis | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>