Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

50 years of long-term observation in the Baltic Sea

30.06.2008
Striking evidence of long-lasting changes in the Baltic Sea were documented in a recently published book.

The Baltic Sea is one of the best-investigated seas; data on the status of its marine environment have been recorded over several decades at numerous sites. The resulting valuable long-term data sets encompass a time span of 50 years and in some case even more.

This treasure, which was scattered over several databases, was now brought together in one comprehensive documentation as a monograph published by John Wiley & Sons and edited by the Warnemünde scientists Rainer Feistel, Günther Nausch and Norbert Wasmund. The book includes a CD containing the largest common data set of the Baltic Sea area, encompassing more than 14 million single readings for meteorology, climate, physics, chemistry and biology of the Baltic Sea.

The long-term data set unravels the existence of unpredictable changes in the physico-chemical basic conditions of the Baltic Sea ecosystem, such as in oxygen supply: Although of high importance for the ventilation of the Baltic Sea deep water, almost no inflow of oxygen-rich saltwater from the North Sea occurred during the whole period of the 1980s, while the salinity in the deep water decreased to a minimum in the early 1990s. Ten years later, these effects were also measured in surface water samples. Actually, this is the time scale required for a drop of deep water to make it to the surface.

At the beginning of the 1990s, salt water inflows became more frequent again. But, on the contrary to the events before the 1980s, they now predominantly occurred during the late summer and autumn instead of winter. This seasonal shift is indicated by much higher temperatures of the deep water of the Bornholm and Gotland Basins since 1997. But not only the temperature is influenced by this change: in late summer, inflowing North Sea waters contain much less oxygen than in winter. But, surprisingly, it still can ventilate the deep areas in case they get in contact with the cold and oxygen-rich so called winter water at certain topographical positions in 40 - 60 m depth. This leads to a clear coexistence of ventilated areas and zones of severe oxygen depletion, but also to frequent transitions among these states and related nutrient fluxes.

Nutrient data from the surface water show a drastic increase of nitrate and phosphate in the 1970s, which is predominantly caused by a rapidly growing consumption of fertilizers in agriculture during that time. Later, the nutrient concentrations stabilize at a level twice as high as the natural background values. This "over-fertilization" is reflected by an increase in phytoplankton biomass, however, with a certain time lag. In the Baltic Proper, phytoplankton reached a peak level in the mid 1990s.

The largest part of this wealth of information is represented by the data set available at the Leibniz Institute for Baltic Sea Research. Several generations of researchers of the IOW and its precursor institutions have contributed essentially to our present knowledge. After first expeditions in 1955, a regular observation programme was established comprising five cruises per year with 80-100 stations worked in the southern and central Baltic Sea since then. The results from these monitoring cruises represent the German contribution to the Baltic Sea Monitoring Programme of the Helsinki Commission for the Protection of the Baltic Sea (HELCOM), but provide at the same time a fundamental data pool for the research of the institute in Warnemünde.

Under the auspices of the IOW, in total 64 scientists from Germany, Denmark, Finland, Poland and Sweden contributed on more than 700 pages with their knowledge on meteorology, climate, physics, chemistry and biology of the Baltic Sea. Without such a collection of measurements, the shifts in the physico-chemical basic conditions of the Baltic and the complexity of the processes could hardly be recognized. A profound understanding of these basics allows to assess future scenarios of the ecosystem development. Even the best-investigated sea of the world still can surprise and intrigue scientists.

Contact:
Dr. Rainer Feistel (+49 381 5197 152); Dr. Barbara Hentzsch (+49 381 5197 102)
Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15
D-18119 Rostock, Germany
Reference:
John Wiley & Sons, Hoboken, USA (Feistel, R., Nausch, G., Wasmund, N., State and Evolution of the Baltic Sea, 1952 - 2005. A detailed 50-year survey of meteorology and climate, physics, chemistry, biology and marine environment, Wiley 2008).

Dr. Barbara Hentzsch | idw
Further information:
http://www.io-warnemuende.de

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>