Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Warming Causing Significant Shift in Composition of Coastal Fish Communities

30.06.2008
A detailed analysis of data from nearly 50 years of weekly fish-trawl surveys in Narragansett Bay and adjacent Rhode Island Sound has revealed a long-term shift in species composition, which scientists attribute primarily to the effects of global warming.

According to Jeremy Collie, professor of oceanography at the University of Rhode Island’s Graduate School of Oceanography, the fish community has shifted progressively from vertebrate species (fish) to invertebrates (lobsters, crabs and squid) and from benthic or demersal species – those that feed on the bottom – to pelagic species that feed higher in the water column. In addition, smaller, warm-water species have increased while larger, cool-water species have declined.

“This is a pretty dramatic change, and it’s a pattern that is being seen in other ecosystems, including offshore on Georges Bank and other continental shelf ecosystems, but we’re in the relatively unique position of being able to document it. These patterns are likely being seen in estuaries around the world, but nowhere else has similar data,” said Collie.

Results of the research by Collie and URI colleagues Anthony Wood and Perry Jeffries will be published in the July issue of the Canadian Journal of Fisheries and Aquatic Sciences.

The weekly trawl survey by URI scientists began in 1959 and continues to the present, making it one of the longest data sets of fish species composition available. The survey has recorded 130 species, though the analysis focused only on the top 25 species, which accounted for 96 percent of the total number of animals collected.

Collie said that while most of the changes occurred slowly, an abrupt change appeared to take place in 1980 and 1981 when benthic species like winter flounder and silver hake declined and pelagic species including butterfish and bluefish increased.

“We think there has been a shift in the food web resulting in more of the productivity being consumed in the water column,” Collie explained.

“Phytoplankton are increasingly being grazed by zooplankton, which are then eaten by planktivorous fish, rather than the phytoplankton sinking to the bottom and being consumed by bottom fish. It’s a rerouting of that production from the bottom to the top.”

Collie noted that the increase in the numbers of lobsters and crabs is a result of their taking advantage of the benthic habitat abandoned by the bottom-feeding fish species.

Overall, the survey analysis found huge changes in the abundance of some species. Butterfish and bluefish, for instance, have increased in abundance by a factor of about 100 times while cunner has decreased by almost 1,000 times.

The analysis also found that while the total number of fish caught in each trawl increased over time, peaking in the 1990s, the size of those fish decreased.

“While we’re catching more fish now, we’re also catching smaller fish,” said Collie, “and that corresponds with how the preferred temperatures of the fish here have changed. The fish community now is dominated by warm-water adapted species compared with what we started with, and fish that live in warmer water are smaller.”

Collie added that fishing may also be a factor in the decline in fish size, since fishing removes the largest individuals from a population while leaving the smaller ones. However, he believes that climate is “the dominant signal.” Sea surface temperature in the area of the trawls has increased by 2 degrees Centigrade since 1959, and the preferred temperature of the fish caught in the trawls has also increased by 2 degrees C.

“That seems to be direct evidence of global warming,” he said. “It’s hard to explain any other way.”

The shift in species composition also correlates with the winter North Atlantic Oscillation index and with chlorophyll concentrations, which declined by 50 percent, both of which are related to warmer sea temperatures.

What do these changes mean for the future of Narragansett Bay?

“Our overall prediction is that Narragansett Bay is soon going to resemble estuaries to the south of us – Delaware Bay, Chesapeake Bay – so we’ll experience what they are experiencing now,” Collie said. “It will continue to get warmer and attract more southern species, such as blue crabs. Species that couldn’t complete their life cycle here before may be able to do that now.”

Todd McLeish | newswise
Further information:
http://www.uri.edu/news

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>