Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Destruction of greenhouse gases over tropical Atlantic

26.06.2008
Large amounts of ozone – around 50% more than predicted by the world’s state-of-the-art climate models – are being destroyed in the lower atmosphere over the tropical Atlantic Ocean.

Published today (26th June ’08) in the scientific journal, Nature, this startling discovery was made by a team of scientists from the UK's National Centre for Atmospheric Science and Universities of York and Leeds.

It has particular significance because ozone in the lower atmosphere acts as a greenhouse gas and its destruction also leads to the removal of the third most abundant greenhouse gas; methane.

The findings come after analysing the first year of measurements from the new Cape Verde Atmospheric Observatory, recently set up by British, German and Cape Verdean scientists on the island of São Vicente in the tropical Atlantic. Alerted by these Observatory data, the scientists flew a research aircraft up into the atmosphere to make ozone measurements at different heights and more widely across the tropical Atlantic. The results mirrored those made at the Observatory, indicating major ozone loss in this remote area.

So, what’s causing this loss? Instruments developed at the University of Leeds, and stationed at the Observatory, detected the presence of the chemicals bromine and iodine oxide over the ocean for this region. These chemicals, produced by sea spray and emissions from phytoplankton (microscopic plants in the ocean), attack the ozone, breaking it down. As the ozone is destroyed, a chemical is produced that attacks and destroys the greenhouse gas methane. Up until now it has been impossible to monitor the atmosphere of this remote region over time because of its physical inaccessibility. Including this new chemistry in climate models will provide far more accurate estimates of ozone and methane in the atmosphere and improve future climate predictions.

Professor Alastair Lewis, Director of Atmospheric Composition at the National Centre for Atmospheric Science and a lead scientist in this study, said: “At the moment this is a good news story – more ozone and methane being destroyed than we previously thought - but the tropical Atlantic cannot be taken for granted as a permanent ‘sink’ for ozone. The composition of the atmosphere is in fine balance here- it will only take a small increase in nitrogen oxides from fossil fuel combustion, carried here from Europe, West Africa or North America on the trade winds, to tip the balance from a sink to a source of ozone”

Professor John Plane, University of Leeds said: “This study provides a sharp reminder that to understand how the atmosphere really works, measurement and experiment are irreplaceable. The production of iodine and bromine mid-ocean implies that destruction of ozone over the oceans could be global”.

Dr Lucy Carpenter, University of York and UK co-ordinator of the Observatory added: “This observatory is a terrific facility that will enable us to keep an eye on the chemical balance of the atmosphere and feed this information into global climate models to greatly improve predictions for this region in the future”.

Louisa Watts | alfa
Further information:
http://www.nerc.ac.uk
http://www.york.ac.uk/capeverde/index.html
http://www.ncas.ac.uk/news/stories/cape_verde_jan_06/cape_verde_diac_jan06.htm

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>