Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atlantic trees will be affected the most by climate change on the Iberian Peninsula

25.06.2008
The extreme heat wave that destroyed the territories of Western Europe in the summer of 2003 was an evident scientific sign of the change that climate is undergoing.

Now, researchers from the University of the Basque Country (Universidad del País Vasco) have studied the responses to the midsummer heat of the Mediterranean and Atlantic trees and bushes of the Iberian Peninsula to conclude that the latter species will suffer most with the increase in temperatures.

Researchers from the Department of Plant Biology and Ecology from the University of the Basque Country have shown the response capacity of Mediterranean and Atlantic plants. ?We were able to notice that all species responded in a similar way, through the accumulation of photoprotective compounds (tocopherol or Vitamin E), reduction in clorophyll content and the activation of the so called xanthophyll cycle, points out José Ignacio Garcia-Plazaola, the first signatory of the study.

The study, which is published in the journal called Trees - Structure and Function, compares the effects of the summer of 2003 with the same period for 1998, 1999 and 2001. Generally, all the summers were dry, but in 2003 there was an average increase of 5o C, and this was considered to be the most stressful time for the trees, which turned yellow and the trees started to shed their leaves before the autumn.

Differences between the Mediterranean and Atlantic species

The researchers noticed a notable difference between the Mediterranean and Atlantic species. The Mediterranean species were much more plastic, having a much greater ability to stimulate the defence systems states García-Plazaola. With regard to the distribution of Atlantic species, scientists recorded the partial extinction of trees or bushes, such as the bearberry (Arctostaphylos), after the heat wave.

The study shows that the Atlantic species have less ability to respond to acute summer stress because of their responses to photosynthesis and the induction of photoprotective molecules. However, the majority of Mediterranean species, as they keep their green leaves throughout the year, are much more protected in the presence of environmental adversities and have developed mechanisms which allow them to acclimatise in an efficient way in the presence of heat waves and episodic cold waves as well.

According to the research, this phenomenon could be of special significance in the context of future global warming when the Atlantic species would be affected more. This result creates doubts about the future viability of certain Atlantic species that find their distribution limit on the Iberian Peninsula, as is the case of the beech tree (F. sylvatica), concludes García-Plazaola.

The unusually hot period that affected Europe in the summer of 2003 may have been the most extreme heat wave in the last 200 years. The plant species had to deal with an unequalled level of environmental stress (or adversity) in their entire existence, circumstances that they will have to face more and more frequently as a consequence of climate change.

Five years after the heat wave the Mediterranean species (Box and Holm Oak) remain the same but it has not been possible for the Atlantic species (Bearberry) to recover and it has disappeared. Photo: SINC/José Ignacio

Garcia-Plazaola.

SINC Team | alfa
Further information:
http://www.lg.ehu.es
http://www.plataformasinc.es

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>