Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UNH Researchers Test Sediment-Scrubbing Technology In Cocheco River

In a mud flat at the edge of the Cocheco River, just outside downtown Dover, scientists from the University of New Hampshire's Contaminated Sediments Center are testing an innovative way to treat polluted sediment in coastal waterways.

Rather than dredging up the problem, or burying it under several feet of sand, they've created a patch � black geotextile mats designed to cap and stabilize pollution in place. Over the next two years, UNH associate professor Kevin Gardner, research assistant professor Jeffrey Melton, and a team of UNH students will monitor these mats to evaluate the effectiveness of this new approach.

"We need to know how these mats behave when they're buried under mud for a few years, compared to how they performed in the lab," says Melton. "What will happen to them in this intertidal zone with boats, waves, birds, and weather? How will they impact bugs and other aquatic life in the sediment?"

The mats are six feet square and one inch thick. They consist of a mixture of reactive materials sandwiched between two layers of geotextile fabric, creating a sort of quilt that traps pollutants but allows water to flow through. The reactive "filling" of this quilt contains three different substances that bind and stabilize different pollutants. One such substance � a UNH-patented technology based on a natural form of phosphorus � treats toxic heavy metals associated with industrial pollution such as lead, copper, zinc and cadmium.

"But you don't just find one pollutant at a site," says Melton. "Everything is all mixed up in the sediment." So he and his colleagues added organoclay and activated charcoal ("like in your Brita filter," he says), which adhere to and treat toxic chemicals such as polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons, (PAHs), and petroleum products that routinely enter waterways through stormwater runoff.

The project is funded by the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET), a partnership of UNH and the National Oceanic and Atmospheric Administration, and NH Sea Grant.

"Polluted sediment is a nationwide problem," says Richard Langan, CICEET's UNH co-director. "We need better tools to identify and treat areas where this pollution has the potential to threaten human and ecosystem health. Technology demonstrations like these, that take advantage of cutting-edge science, are key to making that happen."

The mats present an alternative approach to remediating contaminated sediment; more common responses include dredging or capping sediment beneath several feet of sand. But dredging is expensive, disrupts habitats and poses the problem of how to move - and where to put - all that toxic sediment. Sand caps have questionable long-term effectiveness and can hinder boat traffic and impact aquatic life. "There's no silver bullet. What we are exploring is potentially a great tool to add to the tool box," says Melton.

Melton admits that even as Americans grow increasingly aware of environmental woes, sediment pollution does not score high on the "green glamour" scale. Yet, he points out, everyone is already feeling its impact through regular advisories that close shellfish beds or warn of eating fish contaminated by heavy metals and persistent organic pollutants like PCBs or PAHs.

"You can enjoy a great day of fishing, but if you can't eat the catch, there's a problem," says Melton. It's estimated that 20 percent of the top six inches of all sediment in U.S. rivers, lakes, streams and estuaries is contaminated. In 2004, the U.S. Environmental Protection Agency reported there were 3,221 fish consumption advisories in state waters.

Melton and Gardner chose the Cocheco not because its sediment is especially polluted, but rather because its characteristics as a well-used tidal river and its proximity to UNH make it an ideal laboratory. They plan to compare the performance of the mats in the Cocheco to those they've laid in Cottonwood Bay in Grand Prairie, Texas, adjacent to the Dallas National Air Station, in a demonstration funded by the Department of Defense's Strategic Environmental Research and Development Program (SERDP).

Moving forward, researchers from the Contaminated Sediments Center, part of UNH's Environmental Research Group, plan to test new sampling technologies that measure the scope and potential threat of contamination in sediment. In addition, they're always on the lookout for new test sites.

To learn more about UNH's Contaminated Sediments Center, go to

Beth Potier | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>