Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH Researchers Test Sediment-Scrubbing Technology In Cocheco River

19.06.2008
In a mud flat at the edge of the Cocheco River, just outside downtown Dover, scientists from the University of New Hampshire's Contaminated Sediments Center are testing an innovative way to treat polluted sediment in coastal waterways.

Rather than dredging up the problem, or burying it under several feet of sand, they've created a patch � black geotextile mats designed to cap and stabilize pollution in place. Over the next two years, UNH associate professor Kevin Gardner, research assistant professor Jeffrey Melton, and a team of UNH students will monitor these mats to evaluate the effectiveness of this new approach.

"We need to know how these mats behave when they're buried under mud for a few years, compared to how they performed in the lab," says Melton. "What will happen to them in this intertidal zone with boats, waves, birds, and weather? How will they impact bugs and other aquatic life in the sediment?"

The mats are six feet square and one inch thick. They consist of a mixture of reactive materials sandwiched between two layers of geotextile fabric, creating a sort of quilt that traps pollutants but allows water to flow through. The reactive "filling" of this quilt contains three different substances that bind and stabilize different pollutants. One such substance � a UNH-patented technology based on a natural form of phosphorus � treats toxic heavy metals associated with industrial pollution such as lead, copper, zinc and cadmium.

"But you don't just find one pollutant at a site," says Melton. "Everything is all mixed up in the sediment." So he and his colleagues added organoclay and activated charcoal ("like in your Brita filter," he says), which adhere to and treat toxic chemicals such as polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons, (PAHs), and petroleum products that routinely enter waterways through stormwater runoff.

The project is funded by the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET), a partnership of UNH and the National Oceanic and Atmospheric Administration, and NH Sea Grant.

"Polluted sediment is a nationwide problem," says Richard Langan, CICEET's UNH co-director. "We need better tools to identify and treat areas where this pollution has the potential to threaten human and ecosystem health. Technology demonstrations like these, that take advantage of cutting-edge science, are key to making that happen."

The mats present an alternative approach to remediating contaminated sediment; more common responses include dredging or capping sediment beneath several feet of sand. But dredging is expensive, disrupts habitats and poses the problem of how to move - and where to put - all that toxic sediment. Sand caps have questionable long-term effectiveness and can hinder boat traffic and impact aquatic life. "There's no silver bullet. What we are exploring is potentially a great tool to add to the tool box," says Melton.

Melton admits that even as Americans grow increasingly aware of environmental woes, sediment pollution does not score high on the "green glamour" scale. Yet, he points out, everyone is already feeling its impact through regular advisories that close shellfish beds or warn of eating fish contaminated by heavy metals and persistent organic pollutants like PCBs or PAHs.

"You can enjoy a great day of fishing, but if you can't eat the catch, there's a problem," says Melton. It's estimated that 20 percent of the top six inches of all sediment in U.S. rivers, lakes, streams and estuaries is contaminated. In 2004, the U.S. Environmental Protection Agency reported there were 3,221 fish consumption advisories in state waters.

Melton and Gardner chose the Cocheco not because its sediment is especially polluted, but rather because its characteristics as a well-used tidal river and its proximity to UNH make it an ideal laboratory. They plan to compare the performance of the mats in the Cocheco to those they've laid in Cottonwood Bay in Grand Prairie, Texas, adjacent to the Dallas National Air Station, in a demonstration funded by the Department of Defense's Strategic Environmental Research and Development Program (SERDP).

Moving forward, researchers from the Contaminated Sediments Center, part of UNH's Environmental Research Group, plan to test new sampling technologies that measure the scope and potential threat of contamination in sediment. In addition, they're always on the lookout for new test sites.

To learn more about UNH's Contaminated Sediments Center, go to http://www.unh.edu/erg/ccsr/index.html.

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu/erg/ccsr/index.html
http://www.unh.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>