Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eight-Day Undersea Mission Begins Experiment to Improve Coral Reef Restoration

18.06.2008
Scientists have begun an eight-day mission, in which they are living and working at 60 feet below the sea surface, to determine why some species of coral colonies survive transplanting after a disturbance, such as a storm, while other colonies die.

Coral reefs worldwide are suffering from the combined effects of hurricanes, global warming, and increased boat traffic and pollution. As a result, their restoration has become a priority among those who are concerned.

Using as a home base the National Oceanic and Atmospheric Administration's Aquarius--an underwater facility for science and diving located in Key Largo, Florida--a team of "aquanauts" is working to protect coral reefs from this barrage of threats by investigating ways to improve their restoration.

"It's like living on the space station, except that it's underwater," said Iliana Baums, an assistant professor of biology at Penn State and a collaborator on the project. "The job is dangerous because, once the aquanauts descend, their tissues become saturated with nitrogen. If they were to return to the surface quickly, they would get the bends--an often deadly illness in which tiny bubbles form inside the body. As a result, the divers at the end of their mission must spend an entire day depressurizing by making their way to the surface slowly."

A molecular ecologist, Baums is providing the genetic expertise that will reveal whether particular coral colonies contain forms of genes that allow them to survive transplantation and other stresses, such as increasing sea temperatures. The team has collected hundreds of coral fragments from two species: staghorn coral--which is listed as threatened under the United States Endangered Species Act--and a type of star coral that is common throughout the Caribbean. "We carefully designed the experiment in order to minimize its impact on natural populations," said Baums, who added that one of the collection sites was slated for development, and the corals there would have died anyway.

The researchers are splitting each of the fragments in half and placing one half in a shallow site (30 feet deep) and the other half in a deep site (60 feet deep) to see how they respond over time. "By splitting the fragments, we know that they are the same genetically, and we then can determine whether their abilities to withstand transplanting are due to their genetic makeup or to some environmental factor," said Baums.

While her colleagues in Aquarius transplant corals into the deep site, Baums and Margaret Miller, a scientist with the National Oceanic and Atmospheric Administration (NOAA) and the project's leader, are transplanting corals into the shallow site. Once the animals are established, the team will return to the sites monthly to measure, among other things, the corals' growth rates, their photosynthesis rates, and the biodiversity of the beneficial algae that live inside their cells.

The scientists expect that the study's results will help them to improve coral restoration efforts in the future. "The experiment will tell us why some corals die while others live after transplantation," said Baums. "We want to know if some corals die after transplantation because they already were weakened by an external force or because they are genetically weaker than some other individuals. Coral reefs are important because they protect our shores from wave action and create habitat for fish, but they also are beautiful. I am glad that I am able to apply my scientific expertise to their protection."

Other scientists involved with the project include Dana Williams from the University of Miami and NOAA, Lauri MacLaughlin from the Florida Keys National Marine Sanctuary, Abel Valdivia from the University of Miami and NOAA, Ken Nedimyer from the Coral Restoration Foundation, Mike Durako from the University of North Carolina at Wilmington, and Cheryl Woodley from NOAA. This research is funded by a grant from the NOAA Coral Reef Conservation fund to the University of North Carlonia at Wilmington.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>