Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eight-Day Undersea Mission Begins Experiment to Improve Coral Reef Restoration

18.06.2008
Scientists have begun an eight-day mission, in which they are living and working at 60 feet below the sea surface, to determine why some species of coral colonies survive transplanting after a disturbance, such as a storm, while other colonies die.

Coral reefs worldwide are suffering from the combined effects of hurricanes, global warming, and increased boat traffic and pollution. As a result, their restoration has become a priority among those who are concerned.

Using as a home base the National Oceanic and Atmospheric Administration's Aquarius--an underwater facility for science and diving located in Key Largo, Florida--a team of "aquanauts" is working to protect coral reefs from this barrage of threats by investigating ways to improve their restoration.

"It's like living on the space station, except that it's underwater," said Iliana Baums, an assistant professor of biology at Penn State and a collaborator on the project. "The job is dangerous because, once the aquanauts descend, their tissues become saturated with nitrogen. If they were to return to the surface quickly, they would get the bends--an often deadly illness in which tiny bubbles form inside the body. As a result, the divers at the end of their mission must spend an entire day depressurizing by making their way to the surface slowly."

A molecular ecologist, Baums is providing the genetic expertise that will reveal whether particular coral colonies contain forms of genes that allow them to survive transplantation and other stresses, such as increasing sea temperatures. The team has collected hundreds of coral fragments from two species: staghorn coral--which is listed as threatened under the United States Endangered Species Act--and a type of star coral that is common throughout the Caribbean. "We carefully designed the experiment in order to minimize its impact on natural populations," said Baums, who added that one of the collection sites was slated for development, and the corals there would have died anyway.

The researchers are splitting each of the fragments in half and placing one half in a shallow site (30 feet deep) and the other half in a deep site (60 feet deep) to see how they respond over time. "By splitting the fragments, we know that they are the same genetically, and we then can determine whether their abilities to withstand transplanting are due to their genetic makeup or to some environmental factor," said Baums.

While her colleagues in Aquarius transplant corals into the deep site, Baums and Margaret Miller, a scientist with the National Oceanic and Atmospheric Administration (NOAA) and the project's leader, are transplanting corals into the shallow site. Once the animals are established, the team will return to the sites monthly to measure, among other things, the corals' growth rates, their photosynthesis rates, and the biodiversity of the beneficial algae that live inside their cells.

The scientists expect that the study's results will help them to improve coral restoration efforts in the future. "The experiment will tell us why some corals die while others live after transplantation," said Baums. "We want to know if some corals die after transplantation because they already were weakened by an external force or because they are genetically weaker than some other individuals. Coral reefs are important because they protect our shores from wave action and create habitat for fish, but they also are beautiful. I am glad that I am able to apply my scientific expertise to their protection."

Other scientists involved with the project include Dana Williams from the University of Miami and NOAA, Lauri MacLaughlin from the Florida Keys National Marine Sanctuary, Abel Valdivia from the University of Miami and NOAA, Ken Nedimyer from the Coral Restoration Foundation, Mike Durako from the University of North Carolina at Wilmington, and Cheryl Woodley from NOAA. This research is funded by a grant from the NOAA Coral Reef Conservation fund to the University of North Carlonia at Wilmington.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>