Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eight-Day Undersea Mission Begins Experiment to Improve Coral Reef Restoration

18.06.2008
Scientists have begun an eight-day mission, in which they are living and working at 60 feet below the sea surface, to determine why some species of coral colonies survive transplanting after a disturbance, such as a storm, while other colonies die.

Coral reefs worldwide are suffering from the combined effects of hurricanes, global warming, and increased boat traffic and pollution. As a result, their restoration has become a priority among those who are concerned.

Using as a home base the National Oceanic and Atmospheric Administration's Aquarius--an underwater facility for science and diving located in Key Largo, Florida--a team of "aquanauts" is working to protect coral reefs from this barrage of threats by investigating ways to improve their restoration.

"It's like living on the space station, except that it's underwater," said Iliana Baums, an assistant professor of biology at Penn State and a collaborator on the project. "The job is dangerous because, once the aquanauts descend, their tissues become saturated with nitrogen. If they were to return to the surface quickly, they would get the bends--an often deadly illness in which tiny bubbles form inside the body. As a result, the divers at the end of their mission must spend an entire day depressurizing by making their way to the surface slowly."

A molecular ecologist, Baums is providing the genetic expertise that will reveal whether particular coral colonies contain forms of genes that allow them to survive transplantation and other stresses, such as increasing sea temperatures. The team has collected hundreds of coral fragments from two species: staghorn coral--which is listed as threatened under the United States Endangered Species Act--and a type of star coral that is common throughout the Caribbean. "We carefully designed the experiment in order to minimize its impact on natural populations," said Baums, who added that one of the collection sites was slated for development, and the corals there would have died anyway.

The researchers are splitting each of the fragments in half and placing one half in a shallow site (30 feet deep) and the other half in a deep site (60 feet deep) to see how they respond over time. "By splitting the fragments, we know that they are the same genetically, and we then can determine whether their abilities to withstand transplanting are due to their genetic makeup or to some environmental factor," said Baums.

While her colleagues in Aquarius transplant corals into the deep site, Baums and Margaret Miller, a scientist with the National Oceanic and Atmospheric Administration (NOAA) and the project's leader, are transplanting corals into the shallow site. Once the animals are established, the team will return to the sites monthly to measure, among other things, the corals' growth rates, their photosynthesis rates, and the biodiversity of the beneficial algae that live inside their cells.

The scientists expect that the study's results will help them to improve coral restoration efforts in the future. "The experiment will tell us why some corals die while others live after transplantation," said Baums. "We want to know if some corals die after transplantation because they already were weakened by an external force or because they are genetically weaker than some other individuals. Coral reefs are important because they protect our shores from wave action and create habitat for fish, but they also are beautiful. I am glad that I am able to apply my scientific expertise to their protection."

Other scientists involved with the project include Dana Williams from the University of Miami and NOAA, Lauri MacLaughlin from the Florida Keys National Marine Sanctuary, Abel Valdivia from the University of Miami and NOAA, Ken Nedimyer from the Coral Restoration Foundation, Mike Durako from the University of North Carolina at Wilmington, and Cheryl Woodley from NOAA. This research is funded by a grant from the NOAA Coral Reef Conservation fund to the University of North Carlonia at Wilmington.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>